
Copyright © 2001, Software Productivity Consortium NFP, Inc. All rights reserved.

Removing Requirement Defects and Automating Test
Mark R. Blackburn, Robert Busser, Aaron Nauman

Organizations face many problems that impede rapid development of software
systems critical to their operations and growth. This paper discusses model-based
development and test automation methods that reduce the time and resources
necessary to develop high quality systems. The focus is how organizations have
implemented this approach of model-based verification to reduce requirements
defects, manual test development effort, and development rework to achieve
significant cost and schedule savings.

1 Introduction

Testing accounts for 40 to 75 percent of lifetime development and maintenance costs [Bei83; GW94].
Recent studies indicate that 50 percent of test failures are caused by requirement defects, and that
these test failures typically result in 40 percent rework [NCS99]. Boehm and Basili report similar
findings indicating that 40 to 50 percent of rework is avoidable. Further, they state that finding and
fixing a problem late in the development process can be 100 times more expensive than finding and
fixing it during the requirement or design phase [BB2001].

This paper describes a model-based verification approach that has been effective in locating and
correcting requirement defects early in the development process, reducing manual test development
effort, and reducing rework. The approach referred to as the Test Automation Framework (TAF)
integrates various government and commercially available model development and test generation
tools to support defect prevention and automated testing of systems and software.

1.1 Organization

Section 2 provides context by describing the concept of requirement defects, testable requirements,
and some results achieved in applying the TAF. Section 3 describes how model analysis and model-
based test generation reduce overall development time and effort. It describes how models clarify and
formalize textual requirements and provide the basis for defect prevention and test automation.
Section 4 summarizes an effective approach for organizational adoption, and also provides test
engineer, design engineer, and manager perspectives to illustrate the positive impacts for a variety of
stakeholders.

2 Context

2.1 Testable Requirements

Requirement defects occur in many forms. An incomplete requirement is open to differing
interpretations, while a testable requirement must be complete, consistent and unambiguous. A
testable requirement may include some implicit domain knowledge, but that knowledge must be
known or documented within the organization ensuring the requirement is consistently understand

Copyright © 2001, Software Productivity Consortium NFP, Inc. All rights reserved.

2

within the context of the system under test. Any potential misinterpretation of the requirement is a
defect.

This paper focuses on another form of requirement defect referred to as contradictions or feature
interaction problems. These defects arise from inconsistencies or contradictions within or between the
requirements. These problems can be difficult to identify when requirements are documented in
informal or semi-formal manners, such as textual documents. Often information related to
contradictions span many pages of one or more documents and are introduced when more than one
individual develops or maintains the requirements. Although rigorous approaches and manual
inspections can assist in minimizing incompleteness and contradictions, there are practical limits to
their effectiveness. These limits are related to human cognitive limits and are very dependent on the
personnel involved. Modeling provides a means of formalizing the requirements. The discipline and
structure of the modeling process helps eliminate incompleteness, and the resulting models provide a
basis for tools to assist in detecting incompleteness and contradictions early in the development
process. Requirement testability analysis is the process of refining and clarifying requirements
through models using a combination of the process and automated tool analysis to develop defect-free
requirements.

2.2 Defect Discovery

The effect of early defect discovery is illustrated in Figure 1 by the trend curve labeled “New.” The
rate of defect discovery increases early in the process, but quickly curtails. This is in contrast to the
typical situation reflected by the trend curve labeled “Old,” where defects are not identified until
testing begins or after release when they are most expensive to fix. Defection prevention involves
finding and correcting problems before they propagate to later development phases. Figure 1 also
illustrates the conceptual savings associated with defect prevention as the decreased rate of defect
discovery between the “New” and “Old” trend lines. Defect prevention is most effective during the
requirements phase when the cost of correction is low. Industrial applications, described in Section
2.5, have demonstrated the TAF process directly supports early defect identification and defect
prevention through the use of requirement testability analysis [Saf2000].

2.3 Requirement Validation

Requirement validation ensures captured requirements reflect the functionality desired by the
customer and other stakeholders. Although requirement validation is not the focus of requirement
testability analysis, it is supported. Requirement validation involves an engineer, user or customer
judging the validity (i.e., correctness) of each requirement. Models provide a means for stakeholders
to precisely understand the requirements and assist in recognizing omissions. Tests automatically
derived from the model support requirement validation through manual inspection or execution within
simulation or host environments.

2.4 Test Design Effort

The tasks related to test design are typically manual and error prone and can account for 60 percent of
testing effort. Organizations have reported spending nearly 50 percent of their test effort developing
and debugging test scripts. Automating the process of test design and test driver or script development

Copyright © 2001, Software Productivity Consortium NFP, Inc. All rights reserved.

3

can result in significant cost savings and more effective testing. The TAF approach leverages the
models used to support requirement defect analysis for automating test design activities.

TIME

R
at

e
o

f
D

is
co

ve
ry

Requirements Design &
Build

New

Old

Defect
Prevention

Release
to Test

Release
to Field

Late Defect
Discovery Results in

Significant Rework

100X Increase in Cost of Removing Defects*

Source*: Boehm, Barry. Software Engineering Economics. Englewood Cliffs, NJ: Prentice-Hall, Inc. 1981.
Boehm, Basili. “Software Management.” IEEE Computer, January 2001.

Figure 1. Early Defect Identification and Prevention

2.5 Applications and Results

The core capabilities underlying this TAF approach were developed in the late 1980s and proven
through use in support of FAA certifications for flight critical avionics systems [BB96]. Statezni
described how the approach supports requirement-based test coverage mandated by the FAA with
significant life cycle cost savings [Sta99; Sta2000]. Safford presented results stating the approach
reduced cost, effort, and cycle-time by eliminating requirement defects and automating testing
[Saf2000]. Safford’s presentation summarized the benefits:

• Better quality requirements for design and implementation help eliminate rework in those
phases as well as during test

• Verification modeling can reduce the time normally spent in verification test planning by
up to 50 percent

• Test generation from a verification model can eliminate up to 90 percent of the manual
test creation and debugging effort

• Both the number of test cases and the phasing of their execution can be optimized,
eliminating test redundancy

• A known level of requirements coverage can be planned, and measured during test
execution

Copyright © 2001, Software Productivity Consortium NFP, Inc. All rights reserved.

4

The National Institute of Standards and Technology (NIST) is assessing this approach as the basis for
a methodology and supporting toolkit to automate major aspects of security functional testing
[BBNC01]. The methodology recommends developing models of functional security requirements as
the basis of automated test generation and execution. Experiments indicate the methodology provides
a solution to the problem of functional security testing by increasing test coverage, while reducing
time and manual effort. NIST and its sponsor have investigated other model-based test generation
approaches, but found that they lack support for automated test execution. They cited the ability to
integrate automated test generation with test driver generation mechanisms for multiple test
environments as a key benefit of the TAF approach.

TAF has been used for modeling and testing system, software integration, software unit, and some
hardware/software integration functionality. It has been applied to critical applications like telemetry
communication for heart monitors, flight navigation, guidance, autopilot logic, display systems, flight
management and control laws, airborne traffic and collision avoidance. In addition, it has been applied
to non-critical applications such as workstation-based Java applications with GUI user interfaces and
database applications. The approach supports automated test driver generation in a variety of open
languages (e.g., C, C++, Java, Ada, Perl, PL/I, SQL), as well as, proprietary languages, COTS test
injection products, and test environments.

3 Approach Overview

This section provides an overview of the TAF approach, starting with how it has been successfully
applied in some organizations. Subsequent subsections describe modeling concepts, tools for creating
and maintaining models, tools for automating test generation, tools for automating test execution and
how these different aspects are integrated in the approach.

3.1 Process Flow and Roles

The conceptual process as rendered in Figure 2 identifies the typical organization roles: 1) a
requirements engineer performs requirement analysis, 2) a designer/implementer develops
system/software architecture, design and implementation, and 3) a test engineer performs verification,
including testing, analysis and reviews, and some validation. Any person on the team may perform
one or more roles. Requirements are typically recorded textually and are sometimes supplemented
with graphics, tables or formalized models and algorithms. The requirements typically pass to the
system designers and testers as documents that can include Software/System Requirement
Specifications (SRS), function lists, or change requests.

Copyright © 2001, Software Productivity Consortium NFP, Inc. All rights reserved.

5

Textual
Requirements

& Models

Verification
Models

Test
Engineers

Requirements
Engineers

Designers &
Implementers

System

Tests and
Test Drivers

Test
Results

T-VECTAFSCR

TIME

Interfaces

Key

Tool

- Role

- Tool

- Artifact(s)

Key

Tool

- Role

- Tool

- Artifact(s)

NOTE: process is iterative and can be applied at any system level

Figure 2. Process Roles and Flows

The key change to a typical process is the introduction of verification models. These models support
automated means of identifying model defects and generating tests highly effective in verifying a
system is consistent with the model. Figure 2 illustrates a specific process in which testers are
involved in developing verification models. This approach has been effective in many organizations
not already developing rigorous models. Other successful approaches have involved requirements
engineers or designers using existing modeling tools or adopting new tools, such as MATRIXx,
ObjecTime, or Statemate to develop models that support both development, validation and
verification. This paper highlights a process in which testers develop models to support verification in
SCR (Software Cost Reduction).

SCR, and the associated SCRtool developed by the Naval Research Laboratory, have been used in a
variety of industrial applications to model system and software requirements [HJL96]. As reflected in
Figure 2, the TAF translator transforms and expands the SCR specifications into a form supporting
automatic test generation. T-VEC provides model analysis to detect requirement defects, as well as,
generates test vectors, performs specification coverage analysis, and generates test drivers [BB96;
BBF97].

3.2 Verification Model Development

A “pure” requirement model specifies the requirements in terms of logical entities representing the
environment of the system under test, where as, a verification models specifies requirements in terms
of the interfaces for the system under test; a design engineer typically defines the interfaces. This is
analogous to the way a test engineer develops tests in terms of the specific interfaces as opposed to

Copyright © 2001, Software Productivity Consortium NFP, Inc. All rights reserved.

6

logical concepts of the environment for the system under test. SCR is a table-based modeling
approach, as shown in Figure 3 that models system and software requirements. The SCRtool is used to
develop verification models through a process of requirement clarification.

Behavior

Data Types

SRS

Function
List

Change
Request

Requirements
(come in many forms)

State Machines
(Mode Table) EventsEvents ConditionsConditions

Requirement
Modeling

And
Clarification

Variables

Figure 3. SCR Modeling Constructs

SCR represents systems inputs as monitored variables, system outputs as controlled variables and
intermediate values as term variables. Variables are defined through primitive types (e.g., Integers,
Float, Boolean, Enumeration) or user-defined types. Models are constructed from four model
elements: modes, terms, conditions, and events. A mode class is a state machine, where system states
are called system modes and the transitions of a state machine are characterized by guarded events. A
term is any function of input variables, modes, or other terms. A condition is a predicate
characterizing a system state. An event occurs when any system entity changes value. Each term and
controlled variable must be defined using an event or condition table.

3.3 Model Translations

The TAF translator converts SCR models, which are composed of combinations of condition, event,
and mode tables into test specification models as shown in Figure 4. For model analysis and test
generation the model is “transformed” into a set of precondition/postcondition pairs referred to as test
specification elements. As reflected in Figure 4, a test specification element includes a set of
constraints on the inputs and a postcondition that defines the output as a function of the constrained
inputs. The test specification element constraints are defined as a conjunction (i.e., logically ANDed)
of Boolean-valued relations on the inputs (monitored variables or terms).

Copyright © 2001, Software Productivity Consortium NFP, Inc. All rights reserved.

7

Precondition (Postcondition)

defines used as inputs

Constraint 1 output = f1(inputs)
OR
Constraint 2 output = f2(inputs)
OR
. . .
Constraint n output = fn(inputs)

Condition Tables

Event Tables

Mode Tables

Condition Tables

Event Tables

Condition Tables

Event Tables

Mode Tables

Term
Variables

Monitored
Variables
Monitored
Variables

Controlled
Variables
Controlled
Variables

Common
Conditions

Test
Specification

Element

Figure 4. Representation of Test Specification Model

3.4 Test Generation and Defect Identification

Test vector generation attempts to produce a test vector for every test specification element. A test
vector is a set of test input values that satisfy the input constraints, and an expected output value that is
derived by evaluating the postcondition with the input values [BB96]. Informally, from a test
generation perspective, a specification is satisfiable if at least one test vector exists for every
specification element [BBF97]. If a test vector is not produced, then the specification probably
contains a contradiction (a requirement defect).

The SCRtool can check consistency for individual tables, but most inconsistencies result from cross-
table dependency relationships that are analogous to feature interaction problems. Therefore detect
identification with TAF is a two-step process: 1) the test vector generator attempts to find a test for
every test specification element, 2) a post-processing activity identifies test specification elements that
have no associated test vector. The test specification elements are traced back to the requirements
model to identify requirement defects.

3.5 Test Drivers, Execution and Results Analysis

Test driver generation automates the time consuming and error prone activity sometimes referred to as
test script development. As illustrated in Figure 5, the test driver generator combines test vectors and a

Copyright © 2001, Software Productivity Consortium NFP, Inc. All rights reserved.

8

test driver schema to produce a test driver and a file of expected test outputs. The test vectors describe
the test data, while the test driver schema describes the generic test execution steps. A test driver
schema describes a pattern that performs the steps necessary to execute a test case. The schema is
defined once per test environment. The schema algorithm typically performs some type of
initialization and then loops through each test to initialize outputs to something other than the expected
value, loads inputs, calls the system under test, and then retrieves and stores the actual test outputs.

Test Driver
Generator

Results
Analysis

Test
Environment

Test
Drivers

Test
Driver

Schemas

Test Vectors

Actual
Results

Expected
Results

Test
Report

Figure 5. Automated Test Execution Process

Results analysis simply compares the actual results of test execution to expected test results as defined
by the test vector expected outputs. A comparator utility supplied with the T-VEC tools supports
automating the results comparisons while accounting for any numeric tolerances.

4 Organizational Adoption

The key changes to the organization and existing process necessary in adopting this approach are
relatively minor. In Figure 2, the key organizational change involves using the test engineer to develop
verification models early in the development process. Verification models are developed as
requirements are acquired. These models are continuously analyzed. Defects discovered are fed back
to the requirements engineers for correction. Later in the process, the models are used as the basis of
test vector and test driver generation, rather than developing these artifacts manually. The following
subsections provide rationale from different stakeholder perspectives to explain why this approach is
adopted by organizations.

4.1 Test Engineer Perspective

Test engineers are willing to adopt the process because: 1) they are able to work early in the process as
opposed to late in the process when schedule and budget are more critical and limited, 2) by working
earlier in the process they have more impact on adding test hooks into the system architecture, 3) they
are willing to use new tools to support their job, especially when the process for using the tools is
similar to the existing manual process.

Copyright © 2001, Software Productivity Consortium NFP, Inc. All rights reserved.

9

Test engineers have found that developing verification models using SCR is similar to test plan
development using verification cross-reference matrices. Figure 6 provides an illustration of the
relationship between requirements, which might come in the form of an SRS, function list, or change
request. The traditional test planning activity determines how each function/action in the requirements
is related to one or more conditions (or events). The tabular approach shown to the right is sometimes
used to define the relationship between the functions and associated conditions. The test plan matrix is
then used as the basis for developing the particular test sets.

SRS

Function
List

Change
Request

Key
R = Requirement
TP = Test Plan
TS = Test Set

Test Plan Matrix 1 2 3 4 5
Conditions/Events
Condition 1 T T F F
Condition 2 F F T F
Condition 3 T T F
. . .

Function/Action
Function 1 R R
Action 1 R R R
Function 2 R
Function 3 R
Function 4 R R
. . .

Test Procedure
Code

Test Procedure
Code

Test InputsTest Inputs Expected Output
and Tolerance

Expected Output
and Tolerance

R

TP

TS

R

TP

TS

Function 1 is required when
Condition 1 is True and
Condition 2 is False and

Condition 3 is a “don’t care”

Figure 6. Traditional Requirement-Driven Test Planning

Figure 7 relates the concept of a tabular test plan to requirements modeled using SCR. SCR is a
tabular approach, and testers have found it quite natural to model Conditions of a test plan as Boolean-
valued terms, where the constraints on the inputs are defined using condition, event or mode tables.
Similarly, the Functions of the test plan matrix can be modeled as an SCR table, and related to other
tables that have specified the Conditional relationships. Once a condition or function is modeled it can
also be reused. This systematic approach to requirement modeling, with planned reuse is what helped
Safford’s organization reduce verification test planning by 50 percent [Saf2000].

Use case testing is another popular approach that can be structured as a tabular test plan, as shown in
Figure 6. A use case test is typically defined in terms of a precondition and postcondition. A
precondition can be presented as a Condition/Event in the test plan matrix, while the postcondition can
be represented as a Function/Action. A benefit of the test plan matrix is that commonality between
truth-table relationships (i.e., conditions) is explicitly visible; this can help in better understanding the
completeness of the tests for the required test combinations.

Copyright © 2001, Software Productivity Consortium NFP, Inc. All rights reserved.

10

Condition Tables

Event Tables

Mode Tables

Condition Tables

Event Tables

Mode Tables

Monitored
Variables

Controlled
Variables

Term
Variables

Common
Conditions

Test Plan Matrix 1 2 3 4 5
Conditions/Events
Condition 11 T F F F
Condition 4 F T
Condition 1 F T F
. . .

Function/Action
Function 11 R
Action 1 R R
Action 2
Function 31 R
Function 6 R R R
. . .

Test Plan Matrix 1 2 3 4 5
Conditions/Events
Condition 11 T F F F
Condition 4 F T
Condition 1 F T F
. . .

Function/Action
Function 11 R
Action 1 R R
Action 2
Function 31 R
Function 6 R R R
. . .

Figure 7. Relationship Between Test Plan Matrix and SCR Models

4.2 Design Engineer Perspective

Often design engineers are initially skeptical of this approach. They do not wish to complicate their
designs to support testability. They are more supportive of the adoption once they realize that parallel
testing and program development reduces program schedule risk allowing development and design to
continue for a relatively longer period of time [Saf2000]. In practice, test engineers ask key questions
of the design engineer that help address detailed issues (e.g., range constraints, sizing) earlier in the
process, which helps avoid rework. In addition, the design engineer and implementer have early
access to test drivers, which reduces the implementer’s effort in creating test driver and test stubs to
support unit testing and debugging.

4.3 Manager Perspective

Managers are willing to adopt the new process because developing verification models support
requirement defect analysis and automated testing. Testing becomes continuous throughout the life
cycle as verification models directly support automatic generation of test vectors and test drivers,
reducing cost and schedule. As reflected in Figure 8, managers can use failure analysis supported by
continuous testing as an objective measure of product goodness and releasability. Failures can be
categorized to systematically address and resolve top priority problems. Correcting issues such as
interface problems or feature interaction problems may be necessary for release, while correcting
problems related to an experimental features may be deferred to later releases. Finally, this provides a
basis for software reliability estimates by tracking the failures over time from the beginning of
development as opposed to the start of a serial testing phase.

Copyright © 2001, Software Productivity Consortium NFP, Inc. All rights reserved.

11

Daily Failures Log

• Interface Problem

• Spec/Implementation Mismatch
• Incorrect/Inconsistent Requirement
• Weak Requirement

• Not Supported in Release

Failure Categories

Time

F
ai

lu
re

s

Daily Failures Log

• Interface Problem

• Spec/Implementation Mismatch
• Incorrect/Inconsistent Requirement
• Weak Requirement

• Not Supported in Release

Failure Categories

Time

F
ai

lu
re

s

Figure 8. Management Through Failure Analysis

5 Summary

This paper describes a model-based verification approach that integrates commercially available
model development and test generation tools to support defect prevention and test automation.
Organizations have reported significant cost and effort savings by using this approach to reduce
requirement defects, manual test development, and rework involved in developing and testing both
software and systems. They found requirement modeling takes no longer that traditional test planning,
while reducing redundancy and building in a reusable model library capturing the organization’s key
intellectual assets. Because testing activities occur in parallel to development efforts, they require less
dedicated time at the end of the development cycle. Thus, the approach supports “relatively” longer
development efforts without risk to the overall schedule. Defect prevention is a key benefit of the
approach. It is achieved using model analysis to detect and correct requirements defects (e.g.,
inconsistency, ambiguities, feature interaction conflicts) early in the development process. The
verification models enable automated test generation. This eliminates the typically manual and error-
prone test design activities and provides measurable requirement-based test coverage. Organizations
have demonstrated that the approach can be integrated into existing processes to achieve significant
cost and schedule savings.

6 References

[Bei83] Beizer, B. Software Testing Techniques, New York, New York: Van Nostrand Reinhold, 1983.

[Bla98] Blackburn, M. R., Using Models For Test Generation And Analysis, Digital Avionics System
Conference, October, 1998.

[BB96] Blackburn, M.R., R.D. Busser, T-VEC: A Tool for Developing Critical System. In Proceeding of
the Eleventh International Conference on Computer Assurance, Gaithersburg, Maryland, pages
237-249, June, 1996.

[BBF97] Blackburn, M.R., R.D. Busser, J.S. Fontaine, Automatic Generation of Test Vectors for SCR-
Style Specifications, In Proceeding of the 12th Annual Conference on Computer Assurance,
Gaithersburg, Maryland, pages 54-67, June, 1997.

[BBNC01] Blackburn, M.R., R.D. Busser, A.M. Nauman, R. Chandramouli, Model-based Approach to
Security Test Automation, Quality Week 2001, June 2001.

Copyright © 2001, Software Productivity Consortium NFP, Inc. All rights reserved.

12

[GW94] Ghiassi, M., K.I.S. Woldman, Dual Programming Approach to Software Testing, Software
Quality Journal, 3:45-58, 1994.

[HJL96] Heitmeyer, C., R. Jeffords, B. Labaw, Automated Consistency Checking of Requirements
Specifications. ACM TOSEM, 5(3):231-261, 1996.

[Sta99] Statezni, David, Industrial Application of Model-Based Testing, 16th International Conference
and Exposition on Testing Computer Software, June 14-18, 1999.

[Sta2000] Statezni, David. Test Automation Framework, State-based and Signal Flow Examples, Twelfth
Annual Software Technology Conference, 30 April - 5 May 2000.

[Saf2000] Safford, Ed, L. Test Automation Framework, State-based and Signal Flow Examples, Twelfth
Annual Software Technology Conference, 30 April - 5 May 2000.

