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USING MODELS FOR TEST GENERATION AND ANALYSIS

Mark R. Blackburn, Software Productivity Consortium, Herndon, Virginia

Introduction
Systems are increasing in complexity.

More systems perform mission-critical
functions, and dependability requirements such
as safety, reliability, availability, and security
are vital to the users of these systems. The
competitive marketplace is forcing companies
to define or adopt new approaches to reduce the
time-to-market as well as the development cost
of these critical systems. Much focus has been
placed on front-end development efforts, not
realizing that testing accounts for 40 to 75
percent of the lifetime development and
maintenance costs [Bei83; GW94]. Testing is
traditionally performed at the end of
development, but market-driven schedules
often force organizations to release products
before they are adequately tested. The long-
term effect is increased warranty costs due to
products’ poor reliability and poor quality.

Model-based development tools are
increasing in use because they provide tangible
benefits by supporting simulation and code
generation, in addition to the traditional design
and analysis activities. These tools help users
develop requirement and design models of
target systems. Certain tools are based on
formal models, and the underlying models are
represented using specification languages. Such
formal specifications provide a basis for test
case generation. However, the underlying
development models are generally not
represented in a form that supports automatic
test case generation. The key challenge is to
translate development-oriented modeling
languages into a form that is suitable for
automated test vector generation, specification-

based test coverage analysis, requirement-to-
test traceability, and design-to-test traceability.

Using Models for Testing and Analysis
Figure 1 illustrates a conceptual view

for using models to support test generation and
analysis. Models and their associated tools
typically provide various views of the system
under development. When modeling tools are
based on precise semantics, user models can
also support:

• Test Vector Generation. A test vector
includes inputs, expected outputs, and an
association with the specification from
which it was derived

• Static Analysis. Typically used to
determine if there are contradictions in the
specification

• Dynamic Analysis. Analysis based on
execution of the model.
Modeling tools are beginning to support

simulation and code generation. Simulation of a
model can help developers assess the
correctness of the model with respect to the
user requirements; however, it can be time
consuming to develop simulation data required
for thorough dynamic analysis. Automatically
generated test vectors can provide a cost-
effective way to exercise a model in a simulator
using the boundary values associated with the
constraints of a model specification; it is at the
boundaries where model anomalies are
typically discovered. In addition, these same
test vectors can also be used to test the code in
a host or target environment.

Copyright (c) 1998 Institute of Electrical and Electronics
Engineers. Reprinted, with permission, from the Proceedings
of Digital Avionics System Conference 1998.
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Figure 1. Using Models for Test Generation and Analysis

Scope
This paper describes the use of

automated test generation and analysis from
specification models. Through the integration
of commercial off-the-shelf (COTS) model-
development and test generation tools, a
process has been developed that eliminates
most of the traditional testing activities. This
approach has been demonstrated to identify
many types of specification errors prior to any
implementation. This paper is based on the
experiences in developing two model
translators [BF98; Bla98] supporting:

• Software Cost Reduction (SCR)
[Hen80]/Consortium Requirements
Engineering Method (CoRE) [SPC93] for
modeling requirements

• Real-Time Object-Oriented Modeling
(ROOM) [SGW94] method for analysis and
design

For each respective method and
associated tool, the translators produce a
specification that is used by the T-VEC tool
system to generate test vectors and perform
specification-based test coverage analysis. The
model transformation process is briefly
described using a specification example. The

paper summarizes the results of applying the
process and tools to industrial applications.

Models and Specifications
Formal specifications provide simple

abstract descriptions of the required behaviors
describing what the software should do.
Because formal specifications have, in the past,
been considered difficult to use, they have not
been widely used. Recent advances in visual
model-based development tools provide the
basis for developing formal specifications
while hiding the formalism.

It has been commonly accepted that
formal specifications provide a basis for test
case generation. Goodenough and Gerhart may
have been the first to claim that testing based
only on a program implementation is
fundamentally flawed [GG75]. Gourlay
developed a mathematical framework for
specification-based testing [Gou83]. Figure 2
graphically represents Gourlay’s mathematical
framework for testing and the key relationships
between specifications, tests, and programs.
Given a specification that describes the
requirements for some system, there is one or
more programs that implement the
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specification. Tests are derived from the
specification; if every test executed by a
program computes the appropriate expected
results (i.e., passes every test), there is some
level of confidence that the program satisfies
the specification.

Specification Program

Tests

Implements

Derived from Passes every test
Satisfies

Figure 2. Testing Model and Relationships

In Figure 2, the specification symbol
(i.e., rounded rectangle) is generically used to
represent requirement, design, or test
specifications. Certain specification languages
have tool support that helps in developing
complete and consistent specifications. Such
tools provide the syntactic and semantic rigor
that is required for transforming specifications
into a form suitable for test vector generation.
Model-based specification methods that
support functional, state transition, and event-
based techniques are increasing in popularity
and use because the tool support has helped
make them easier to use.1

A model-based specification approach
constructs an abstract model of the system
states and characterizes how a state is changed
by abstract or concrete operations (paraphrased
from Cohen et al. and Cook et al. [CHJ88;
CGDDTK96]). Operations in the system are
specified by defining the state changes or
events that affect the model using existing
mathematical constructs like sets or functions.
State transitions define relationships between
sequences of states based on conditions of the
system state. Event specifications define
certain conditions related to a change in the
system state.
                                                       
1 Zave and Jackson [ZJ97] identify potential implementation
bias of model-oriented techniques but support the claim that
model-oriented techniques are gaining in popularity.

A test specification model is defined
by a set of test specification elements, as shown
in Figure 3. A test specification element is an
input-to-output relation and an associated
constraint defined by a conjunction (i.e.,
logically ANDed) of Boolean-valued relations
that define constraints on the inputs associated
with the input-to-output relation.

Precondition Oracle (Postcondition)

has-a

Specification
has-a has-a

Defines Input-to-Output
Relation for Expected

Output

Output
Space

Input
Space

Program/
Function/
Operation

defines used as inputs

Defines Constraints
on Inputs

Specification

Constraint 1 output = f1(inputs)
OR
Constraint 2 output = f2(inputs)
OR
. . .
Constraint n output = fn(inputs)

Set of Specification Elements

Figure 3. Representation of Test Specification Model

Given a specification element, a test
vector is a set of test inputs values derived
from the constraint, and an expected output
value derived from the input-to-output relation
with respect to the test input values [BB96].
Informally, from a test generation perspective,
a specification is satisfiable if at least one test
vector exists for every specification element
[BBF97].

Model Transformation
Model transformations are typically

required to transform model-based
specifications into a form to support test
generation. Hierons describes rewriting rules
for Z specifications [Hie97] to support test case
generation, but does not address specifications
composed of combinations of specification
techniques, particularly specifications
composed using event specification techniques.
In general, model transformation to support
tool interoperability is an important area of
investigation [Gil97].
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Blackburn [Bla98] describes a tool-
based approach for transforming a model-based
specification into a form that supports test
vector generation. The model-based
specification supports composition using
function, state, and event specifications. A
translator implements rules for transforming
SCR model specifications into a language used
by the T-VEC test vector generation tool. The
development of the prototype translator and
evaluation environment helped identify
shortcomings in the rules described in prior
work that was presented at the 1997 Computer
Assurance Conference [BBF97].

Similar model transformation efforts,
not described in this paper, were performed for
the ROOM method using the ObjecTime
Developer toolset as part of the validation
environment [BF98].

Evaluation Environment
Figure 4 identifies generic tool types

that are related to the elements of the test model
shown in Figure 2. Such tools use or produce
the three primary types of system artifacts (i.e.,
specifications, programs, and tests). A specific
instance of this model was created to support
the model transformation approach using the
SCR tool (referred to as SCR* - pronounced
SCR star) as the source for model-based
specifications and the T-VEC tool system as
the tool that supports test generation and
specification-based coverage analysis.

SCR*, developed by the Naval
Research Laboratory, supports modeling and
analysis of requirement specifications using a
formal modeling language (i.e., a language with
well-defined syntax and semantics).

T-VEC, developed by T-VEC
Technologies, Inc. supports:

• Test Vector Generation. A test vector
generator produces test vectors from test
specifications.

• Specification-Based Coverage Analysis.
This tool analyzes the transformed
specification to determine whether all

specification elements have a
corresponding test vector. This is the
mechanism used to assess satisfiability of
the transformed specifications.
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Satisfies

Specification

Model
Specification
Environment

SCR/ObjecTime
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Figure 4. Tools of the Evaluation Environment

Applications and Results
The remainder of this paper describes a

simple example to illustrate the use of this
approach for model analysis and testing.
Consider the example shown in Figure 5 of an
electronic regulator. The requirements for the
regulator are:

• When the temperature reaches the High
zone (i.e., 180 degress), the valve opens.

• The amount the valve opens is a function of
the temperature from 120 degrees (closed)
up to 300 degrees (fully open).

• Once the valve is open, it remains open
until the temperature reaches the Low zone
(i.e., 120 degrees).

Electronic
Regulator

Flow

Valve180

120

Sensor
Low

Ready

High

Operational Summary
If Temp reaches High
zone then Valve opens
as a function of
temperature until such
time when Temp goes
into the Low zone at
which time the Valve
closes

Temp: range [-100…300]

From Events To
LOW @T(Temp >= Low) READY
READY @T(Temp >= High) HIGH
HIGH @T(Temp < Low) LOW

Sensor Mode Table

Valve Condition Table
Mode
LOW, READY FALSE TRUE
HIGH TRUE FALSE
Valve= 255-(Max_Temp-Temp * 

255/(High-Low))
0

Conditions

Figure 5. Example of Electronic Regulator
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The specification is described in the
SCR tabular notation. Heitmeyer et al. [HJL96]
describes the SCR method. The specification is
defined in two parts. The first part of the
specification defines the relationships between
the temperature and the associated modes that
relate to the temperature zones. This is referred
to as the Sensor Mode Table shown in Figure 5.
The system can be in one of three modes:
LOW, READY, and HIGH. At the time when
the temperature becomes greater than the
constant Low (i.e., 120 degrees), the system
transitions into the mode READY. The formal
expansion of the event is:

@T(Temp >= Low) means:

if the previous value of Temp
denoted NOT(_Temp >= Low) and the
new value of Temp >= Low then the
event is true and the mode
transitions from LOW to READY

Table 1 shows the translated meaning
for each event specification of the Sensor Mode
Table. For each constraint, there is a minimal
set of tests as shown in Table 2. The T-VEC
test generation system uses a test selection
heuristic based on domain testing theory where
low-bound and high-bound values are selected
for each constraint.2 For example, the first test
selects the low-bound value for the previous
state value of _TEMP3 (-100), which is less
than the constant Low, and selects a value of
120 for the next state value of TEMP. For the
high-bound selection, the value of 119 (i.e., one
                                                       
2 White and Cohen proposed domain testing theory as a
strategy to select test points to reveal domain errors [WC80].
Their theory is based on the premise that if there is no
coincidental correctness, then test cases that localize the
boundaries of domains with arbitrarily high precision are
sufficient to test all the points in the domain. When there is a
strong correlation between the specification constraints and
implementation paths, the selected test data should uncover
computation and domain errors. As defined by Howden and
refined later by Zeil, a computation error occurs when the
correct path through the program is taken, but the output is
incorrect due to faults in the computation along the path. A
domain error occurs when an incorrect output is generated due
to executing the wrong path through a program [How76;
Zei89].
3 An underbar (_) precedes the variable name to indicate that
the variable represents the previous state variable before the
event versus the next state variable after the event.

less that the constant Low) is selected for
_TEMP, and 179 for TEMP (i.e., one less than
the constant High).

Table 1. Relationship of Translated Constraints

Events Translation
@T(Temp >= Low) (Temp >= Low) AND (_Temp < Low)
@T(Temp >= High) (Temp >= High) AND (_Temp < High)
@T(Temp < Low) (Temp < Low) AND (_Temp >= Low)

Table 2.  Tests for Each Translated Constraint

Output
Translation Sensor _Sensor Temp _Temp

READY LOW 120 -100
READY LOW 179 119
HIGH READY 180 120
HIGH READY 300 179
LOW HIGH -100 180
LOW HIGH 119 300

(Temp >= Low) AND 
(_Temp < Low)
(Temp >= High) AND 
(_Temp < High)
(Temp < Low) AND 
(_Temp >= Low)

Inputs

The second part of the specification
defines the constraints and functions for the
Value Condition Table shown in Figure 5. This
table depends on the Sensor Mode Table. The
Valve Condition Table is interpreted as
follows:

if Sensor mode = High then
  Valve = 255-(Max_Temp-Temp
          * 255/(High-Low))
else if Sensor mode = LOW
     or Sensor mode = READY then
  Valve = 0
endif

Each SCR output variable and
associated function map to a T-VEC functional
relationship of an output variable with respect
to the constraints on the input variables. The
SCR model does not necessarily define a
system state strictly in terms of constraints on
the input variables as is required for T-VEC.
For example, the Sensor mode is defined in
terms of a mode transition table. This results in
table dependencies as illustrated in Figure 6.
The mode variables and the associated table
relations must be transformed into constraints
on the input variables.
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Mode
LOW, READY FALSE TRUE
HIGH TRUE FALSE
Valve= 255-(Max_Temp-Temp * 

255/(High-Low))
0

Conditions

From Events To
LOW @T(Tem p >= Low) READY
READY @ T(Tem p >= H igh) HIGH
HIGH @T(Tem p < Low) LO W

Sensor Mode Table

Valve Condition Table

Output
Space

Input
Space

Program/
Function/
Operation

Sensor

_Sensor

Constraints/
Precondition

Functional
RelationshipTemp

_Temp

Figure 6. Dependency Relationship

Figure 6 provides a perspective of the
example SCR specification represented in a
form that is compatible with the test model
shown in Figure 3. The constraint for the Valve
Condition Table includes the conditions of the
Valve table and the Sensor Mode transition
table. This means that the constraint:

(Temp >= High) AND (_Temp < High)

must be satisfied (i.e., the Sensor mode is
HIGH) as a requirement for the value to be
computed using the functional relationship:

1) 255-(Max_Temp-Temp
2) * 255/(High-Low))

In general, mode transition tables can
have dependencies on other terms and modes.
Events for modes and terms create the need to
identify the previous and next state variable
dependencies. As shown in Figure 6, the Sensor
mode table depends on both the previous and
next state input value of Temp; similarly the
condition table Valve depends on the previous
and next state variables Temp and Sensor.

A test specification requires the
constraints of a specification to be defined
strictly in terms of the input and output
variables. A model-based approach defines
states that are relations of inputs, terms, or state
variables (e.g., Sensor, _Sensor). This allows
the constraint/precondition and functional
relationship (defined in terms of a Condition
Table) to be defined as a relation on inputs,
states, or terms. This approach typically
simplifies the task of specifying behavior, but it

is the key reason why a model transformation
process is required.

Static Analysis
Static analysis helps determine whether

there are contradictions in the model without
executing the model. Contradictions exist if
constraints cannot be satisfied. This is typically
the most common problem, especially when the
dependencies of specifications become large.
This example is a simple 2-level dependency
problem, but typical systems can have 10 or
more dependency levels. It is also possible to
identify functional relationships that specify
values that are inconsistent with the domain of
the output variables. These are analogous to
computation errors in the code.

Consider the function to compute the
Valve function. The requirements are that as
the temperature reaches the maximum
temperature (i.e., 300 degrees), the valve
should be completely opened, and when the
value reaches the constant Low (i.e., 120
degrees), the valve should be closed.
Electronically controlled devices typically use
some type of digital value to represent a fully
open valve (in this case 255 – an 8-bit unsigned
integer), and the value should be 0 when the
valve is closed. It is common for implementors
to make errors in scaled arithmetic conversions.
To illustrate this point, the computation has two
errors.

Figure 7 shows a sample test vector that
has identified a problem in the computation. A
warning is appended to the expected output
because the computation is out of range. This is
typically an indication that there is a
computation error in the specification or that
there are missing constraints on the inputs. The
original expression (line 1 of the functional
relationship under Figure 6) is missing
parentheses around Max_Temp-Temp. In line
2, the subtraction should be Max_Temp-Low
rather than High-Low. The correct computation
is as follow:
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255-((Max_Temp-Temp) *
255/(Max_Temp-Low))

Identifying this type of problem is time
consuming. In addition, it is well known that
identification and removal of errors in the
implementation or integration phase is much
more costly than it is during the requirements
phase.

Valve<<1>>,  RP__1<<1>>
OUTPUT
  Valve FLOAT 32 720.0 {0.00..255.0} "WARNING: VALUE OUTSIDE of EXPECTED RANGE"
INPUTS
  Sensor   ENUMERATION  32  3 HIGH  {LOW .. HIGH}  
  Temp     INTEGER      32  180  {-100 .. 300}  
  _Sensor  ENUMERATION  32  2 READY  {LOW .. HIGH}  
  _Temp    INTEGER      32  120  {-100 .. 300}  
JUSTIFICATION {
  SOLUTION : 1
  STATE_SPACE_SCAN : OFF
  SWITCHES : LEAST_RECENT, LOW_BOUND, SINGLE, OPPOSITE
  DCP : 1
    Valve, Valve_FR__1, cv_Valve_RP__1, Valve_RP__1, Valve_RP__0, 
    Sensor_LS, Sensor<<2>>, Sensor_FR__2, Sensor_RP__2, 
    Sensor_RP__0, Sensor_Valve_2
}

Indicates output out of range

Figure 7. Internal Form of Test Vector With
Warning

Figure 8 provides a summary of a
minimal set of test values for the translated
condition table for Valve. In this figure, the
associated test selection mode (i.e.,
LOW_BOUND, HIGH_BOUND) is also
shown.

Output
Mode Valve Sensor _Sensor Temp _Temp

85.00 HIGH READY 180 120 LOW_BOUND

255.00 HIGH READY 300 179 HIGH_BOUND

0.00 LOW HIGH -100 180 LOW_BOUND

0.00 LOW HIGH 119 300 HIGH_BOUND

0.00 READY LOW 120 -100 LOW_BOUND

0.00 READY LOW 179 119 HIGH_BOUND

LOW, 
READY

FALSE TRUE

Test Selection 
Mode

Input
Conditions

HIGH TRUE FALSE

Figure 8. Test Vectors for Valve Condition Table

Sample Results
Table 3 shows some sample results on

the application of this approach to other
systems. Each specification originally had one
or more specification problems or anomalies.
As seen in Figure 5, the electronic regulator
problem is very small (two tables, five
functional relationship, two constraints, and
maximum depth of two table dependencies). A
flight guidance system is a real-world industrial
problem [Mil98]; it has 78 tables, 423
functional relationships, 7,349 constraints, and
a maximum dependency depth of 12. The

results on this project are planned for
publication in the next year.

Table 3. Sample Results Statistic

System/Projects
Condition 
Table

Event 
Table 

Mode 
Table

Functional 
Relationship Constraint Level

Temperature 
regulator 1 1 5 6 2
Safety injection 1 1 1 10 68 3
Electronic flight 
instrumentation 
system 37 5 0 88 389 3
Elevator system 10 6 0 38 90 3
Flight guidance 
system 49 15 14 423 7349 12

Summary
Software testing will play a role in the

development of software systems for some time
to come. Although testing can account for 40 to
75 percent of the lifetime development and
maintenance costs, the results summarized in
this paper provide promising evidence that the
use of test automation to support the manually
intensive test generation and model-based
analysis is feasible and practical.

 There is a great need to demonstrate
and integrate new and advanced technologies.
This paper describes an environment developed
to validate the use of model-based translators
on real-world applications. The environment
integrates model-based development tools with
a specification-based test vector generator and
specification-based coverage analyzer.

As modeling tools and associated
methodologies continue to evolve, these results
provide the basis for building translators for
other modeling tools. This allows new tooling
technology to be integrated with existing tools
and has the indirect effects of reducing the cost
and time of specialized training and tool
expenditures.

The ability to integrate front-end
development tools with back-end testing tools
fosters the use of model-development tools, and
such tools can significantly reduce the
maintenance phase of a product, which
typically consumes 70 percent of the product
life cycle. Maintenance typically requires
minimal development effort but typically large
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efforts in testing. Because the original
developers usually are not available to assist in
maintenance and evolution efforts, test
automation can significantly minimize
reverification efforts because the designer’s
requirement and design knowledge is captured
in model specifications.
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