

Mars Polar Lander Fault Identification Using Model-based Testing
Mark Blackburn Robert Knickerbocker
Robert Busser Richard Kasuda
Aaron Nauman Lockheed Martin Space Systems Company
Software Productivity Consortium/T-VEC Astronautics Operations
2214 Rock Hill Road, Herndon, VA 20170 P.O. Box 179, Denver, CO 80201-0179

Abstract�

This paper describes the application of the Test
Automation Framework (TAF) on the Mars Polar Lander
(MPL) software. The premature shutdown of the descent
engine on the MPL spacecraft is believed to be the most
likely cause for the mission failure. It is believed that the
engine shutdown occurred when the three landing legs
were extended into their deployed position. This event
created an unanticipated transient touchdown indication
from the legs, causing the software to inadvertently
shutdown the descent engines prior to reaching the
surface of Mars. This spurious indication should have
been ignored by the Touchdown Monitor (TDM) software,
but due to a design flaw, was actually “latched,” thus
causing the premature engine shutdown. The TAF
approach was used to model the TDM software
requirements. The associated TAF tools generated tests
that identified a potential TDM fault.

1. Introduction

The Mars Polar Lander (MPL) was launched on January 3,
1999 and lost on
December 3, 1999.
A premature
shutdown of the
MPL descent
engine is believed
to be the most likely
cause for the
mission failure. It is
believed that the
engine shutdown occurred because of a failure to properly
process an electrical transient when the three landing legs
were extended into their deployed position. This event created
an incorrect touchdown indication from the legs, causing the
software to inadvertently shutdown the descent engines prior
to reaching the surface of Mars. This spurious indication
should have been ignored by the Touchdown Monitor
software, but due to a design flaw, was actually “latched,”
thus causing the premature engine shutdown. Lockheed
Martin Space Systems Company Astronautics Operations
(LMAO - Denver) was responsible for the development and
verification of the MPL spacecraft and on board software.

The Software Productivity Consortium (Consortium)
members have requested greater support in the area of
verification and test automation. To address the need the

Consortium developed capabilities referred to as the Test
Automation Framework (TAF). TAF integrates various
government and commercially available model development
and test generation tools to support defect prevention and
automated testing of systems and software. The Consortium
helps members with technology transfer through pilot
projects. As a result LMAO requested that the TAF team use
TAF to detect the error in the TDM system.

The objective was to demonstrate the capability of the
TAF approach to detect a deeply hidden problem in the
implementation of an MPL component called the Lander
Touchdown Monitor (TDM). LMAO sent the requirements
and the code to the Consortium TAF team, but did not
disclose the source or location of the problem. At that time the
TAF team was not aware of the details of the TDM problem.
This paper provides an overview of the results of applying the
TAF to the TDM problem.

1.1 Results summary

The TAF team developed a model for the TDM system
from the requirements supplied by LMAO using the Software
Cost Reduction (SCR) tool [HJL96]. The TAF team spent
about 12 staff hours modeling the requirements and building
the test driver schema to support test injection into the TDM
C code module supplied by the LMAO team. The TDM
module is approximately 50 source lines of code. The team
generated test vectors and test drivers using the T-VEC
system. The tests were injected into the TDM code module in
an attempt to uncover the fault. The problem was not
identified.

The TAF team flew to LMAO (Denver) to present their
results on the following week. The developer of the code,
along with the TDM team and other related LMAO V&V
staff, were present at the presentation. The TAF team
explained the model, and executed the generated tests against
the code. The TAF team observed that the TDM code used
state data that was managed and accessed through several
code entry points, and the TDM developer confirmed this.
The TAF team modified the test schema to simulate multiple
calls to the entry points much like that of the real-time multi-
tasking executive of the TDM software. These additional calls
would propagate the state data. New test drivers were
automatically generated from the original model, and the
modified test drivers were executed exposing the fault.

The T-VEC test generation system uses a test selection
heuristic based on domain testing theory [WC80] where test
values are selected for each constraint. Domain testing theory
is based on the intuitive idea that faults in implementation are

more likely to be found by test points chosen near
appropriately defined program input and output domain
boundaries [TVK90]. The test vectors stimulating the failures
were associated with the constraint that represents the
situation where a landing leg sensor indicates touchdown for
two consecutive reads. The test driver generation mechanism
provides the flexibility to simulate the periodic calls of the
TDM real-time executive. The combination of the test vector
generation, which selects inputs for the critical constraint, and
test driver generation, which emulates the real-time executive
provided the stimulus to initiate a test failure associated with
the probable program fault.

The results of the application suggest that the TAF
approach may have the potential to provide a systematic and
cost-effective approach for verification. LMAO believes the
tool provides a standardized test approach and a more
thorough test capability than the manual approach. LMAO
and its customers are considering future pilot projects to more
fully assess the TAF capabilities.

2. Approach and toolset

2.1 Process overview

The conceptual process flow that relates the artifacts to the
tools is shown in Figure 1. The TDM specification is modeled
using the SCRtool. An SCR-to-T-VEC translator translates
the SCR model to a T-VEC test specification. T-VEC
automatically generates test vectors (i.e., test cases with test

input values, expected output values and traceability
information) and requirement-to-test coverage metrics. T-
VEC automatically generates test drivers to execute tests
against the TDM code compiled in a Microsoft C++
development environment running on a Windows NT
platform. The execution of the test driver results in actual
outputs that are then compared with the expected outputs, and
the results report is produced. SCR concepts and tool

2.2 SCR concepts and tool

SCR is a table-based modeling approach that models
system and software requirements. SCR represents system
inputs as monitored variables, system outputs as controlled
variables and intermediate values as term variables.
Variables are defined as primitive types (e.g., Integers, Float,
Boolean, Enumeration) or as user-defined types. Behavior is
defined using a tabular approach relating four model
elements: modes, conditions, events, and terms. The required
functionality or behavior of the system is defined using tables
to relate monitored variables to controlled variables. There are
three basic types of tables (with two variants):

• Condition table (with mode or modeless)
• Event table (with mode or modeless)
• Mode transition table for a mode class

A mode class is a state machine, where system states are
called system modes and the transitions of the state machine
are characterized by guarded events. A condition characterizes

TDM Requirements

SCR Modeling Tool

scr2tvec
Model

Translator

Test Environment

MS Development
Studio for C++
NT Workstation

T-VEC Test
Specification

T-VEC
Test Vector
Generator

Test Vectors

T-VEC
Test Driver
Generator

Test Driver Schemas

Requirement Modeling
and Clarification

Interfaces
Data Types
Variables
Constants

Behavior
Condition

Event
State machine

Figure 1. Process flow and artifacts

system state with an expression that evaluates to true or false.
An event occurs when any system entity changes value.

The SCR modeling approach permits condition, event and
mode tables to be combined. Terms and controlled variables
are functions of input variables, modes, or other terms. Their
values are defined in the model through event or condition
tables. This allows complex relationships between monitored
and controlled variables to be described using terms with
simpler relationships modeled in condition, event or mode
tables.

3. TDM requirements and model

The LMAO TDM team supplied the textual requirements
shown in Figure 2 to the TAF Team.

3.1 Requirements analysis

Developing SCR models requires identifying the system
monitored (input) and controlled (output) variables, and
defining the relationships between them. This process is
typically iterative. It involves defining the variables, data
types associated with the variables, and the tables that define
relationships between the variables. A useful guideline for
developing SCR models is to work backwards from each

output to make the process goal-oriented. The value of each
output is defined in terms of the system inputs. Term
variables are introduced whenever intermediate values are
necessary or useful. Breaking the TDM requirement into
clauses supports identifying variables and relationships. Table
1 contains elaboration and clarification of the TDM
requirements to support modeling. It identifies the variables
and relations associated with each clause.

The monitored (input) variables identified in the system
can be refined into the following set:

• TD_1, TD_2, TD_3 – the current sensor value
for landing legs 1, 2, and 3 respectively

• TD_1_Last, TD_2_Last, TD_3_Last - the sensor
value for landing legs 1, 2, and 3 from the
previous cycle

• CMD_disable_enable – the state of the event
generation flag – when enabled the touchdown
signal can be issued

• TDM_started – the global variable that allows
the TDM executive to run

Figure 2. TDM requirements

Table 1. TDM requirements
Requirement Statement/Clause Variables Relations

TD_1, TD_1_Last
TD_2, TD_2_Last
TD_3, TD_3_Last

TDM(c) Upon enabling touchdown event generation, the Lander
flight software shall attempt to detect failed sensors by marking
the sensor as bad when the sensor indicates “touchdown state”
on two consecutive reads. All First_Marked_Bad
TDM(d) The Lander flight software shall generate the landing
event based on two consecutive reads indicating touchdown
from any one of the "good" touchdown sensors. All TDM_thruster
TDM(e) The Lander flight software shall command a shutdown
of thrusters within 20 milliseconds of touchdown detect. Outside scope of code module
TDM(f) The Lander flight software shall set a sequencing global
variable to indicate the touchdown event has occurred. All TDM_thruster

CMD_disable_enable

TDM_started
TDM(g) The Lander flight software shall enable event
generation only while cyclic event detection is active.

TDM_event_enabled,
TMD_Modes,
TDM_thruster

TDM(a) The Lander flight software shall cyclically check the
state of each of the three touchdown sensors (one per leg) at
100 Hz during EDL.
TDM(b) The Lander flight software shall be able to cyclically
check the touchdown event state with or without touchdown
event generation enabled.

Periodic processing controlled
in test driver

TD_Sen1, TD_Sen2,
TD_Sen3

Although the requirements document indicates that the
output is “Touchdown time,” the key output associated with
the code is called “TDM_thruster” which is modeled as an
enumerated data type that can take on the value of DISABLE

– meaning that the thruster is shut off, or ENABLE, meaning
that the thruster is on:

• TDM_thruster – the variable associated with the
control of the TDM thruster

TDM_thruser

Monitored
(Input)

Variables

TDM_thruster

Controlled
(Output)
Variables

First_Marked_Bad

CMD_disable_enable,
TDM_started

TD_1,
TD_Last_1

TD_Sen2TD_Sen2

TD_2,
TD_Last_2

TD_Sen1TD_Sen1

Key

Condition
Table

TD_Sen3TD_Sen3

TDM_ModesTDM_event_enabled

TD_3,
TD_Last_3 Mode

TableM

M

Figure 3. Model structure for TDM

3.2 Modeling functional requirements

Once the system’s data is defined, its behavior can be
modeled. In SCR, this involves defining the values of the
controlled (output) variables through condition, event, or
mode tables. These tables define the value of a variable in
terms of monitored (input), terms (intermediate), and mode

(state) variables. Figure 3 provides a representation of the
TDM model. A condition table defines the output value for
TDM_thruster. It depends on five term tables and one mode
table. These term and mode tables are directly associated with
the relations defined in Table 1. They result from
relationships derived from the textual requirements. A value
of a term variable is defined through a condition or event

table as an intermediate value. Terms can be referenced in the
constraints or value calculations of other terms or controlled
variables. They reduce the model complexity by simplifying
expressions and eliminating redundancies.

The TDM(b) requirement results in the three terms
TD_Sen1, TD_Sen2, and TD_Sen3 that define the conditions
associated with the sensor signal for each landing leg. They
are related to the requirement TDM(c) through the term
First_Marked_Bad. This First_Marked_Bad term models the
requirement for detecting a failed sensor, where the first
sensor with two consecutive reads is marked bad. The term
First_Marked_Bad also depends on TDM_Modes, which
depends on TDM_event_enabled. These terms represent
conditions and states associated with enabling event
generation. The combination of these term variables are used
to represent the requirements for TDM(d) and TDM(f) that
define the values of the output TDM_thruster. The model
details are described in the following sections, and Figure 4
provides the detailed tabular specification for the term and
condition variables.

3.3 Modeling relations TD_Sen1, TD_Sen2, and
TD_Sen3

The term TD_Sen1 defines the conditions when the touch
down sensor indicates that two consecutive reads have
occurred for landing leg one. When the conditions TD1 and
TD_Last_1 (previous read) are satisfied the value of
TD_Sen1 is TRUE, otherwise it is FALSE. The relations for
TD_Sen2 and TD_Sen3 are similar to TD_Sen1, but apply to
landing legs 2 and 3 respectively.

3.4 Modeling relation TDM_event_enable

The term TDM_event_enable is an Enumerated variable.
The specified value for TDM_event_enable is TDM_YES
when the command to enable event generation has been
enabled (CMD_disable_enable = ENABLE) and the TDM
executive had been allowed to run (TDM_started =
TDM_YES), otherwise TDM_event_enabled is set to
TDM_NO.

3.5 Modeling relation TDM_modes

The mode TDM_Modes defines the event when the TDM
software transitions from the state Before_event to the
Event_gen state. This occurs at the time when
TDM_event_enabled takes on the value TDM_YES (and is
represented by the event expression
@T(TDM_event_enabled = TDM_YES). The mode table
also defines the event transition for transitioning from the
Event_gen state back to the Before_event state when the
TDM_event_enabled changes to the value TDM_NO.

3.6 Modeling relation first_marked_bad

The term First_Marked_Bad is modeled as an Integer that
returns a value between zero and three. The table
First_Marked_Bad is also associated with the mode table
TDM_Modes. The first column of the table contains the value
Before_event and Event_gen, which are the two possible
modes for TDM_Modes. These mode values are combined
with the conditions as they specify the required value for the
output First_Marked_Bad. When the mode is Before_event
the value of First_Marked_Bad must always be zero, as
indicated by the TRUE condition in the row associated with
Before_event mode. When the mode is Event_gen, the value
of First_Marked_Bad takes on the value of one, two or three
depending on the condition associated with the term for the
sensors TD_Sen1, TD_Sen2, or TD_Sen3, otherwise it takes
on the value zero.

3.7 Modeling relation TDM_thruster

The condition table for TDM_thruster also is shown in
Figure 4. Like First_Marked_Bad, TDM_thruster is also
associated with the mode table TDM_Modes. When the
mode is Before_event the thruster must always be ENABLE.
After the Event_gen, the thruster takes on the value
DISABLE when TDM_started is equal to TDM_YES, with
one of three possible conditions:

1. First_Marked_Bad = 1, indicating that sensor leg 1
has been marked bad, and then sensor leg 2
(TD_Sen_2) or sensor leg 3 (TD_Sen_3) has
become true.

2. First_Marked_Bad = 2, indicating that sensor leg 2
has been marked bad, and then sensor leg 1
(TD_Sen_1) or sensor leg 3 (TD_Sen_3) has
become true.

3. First_Marked_Bad = 3, indicating that sensor leg 3
has been marked bad, and then sensor leg 1
(TD_Sen_1) or sensor leg 2 (TD_Sen_2) has
become true.

Otherwise, if the mode is still Event_gen, then
TDM_thruster must be ENABLE when:

1. First_Marked_Bad is zero – indicating that no
sensor has been activated

2. First_Marked_Bad is 1, but neither sensor for leg 2
or 3 has been sensed

3. First_Marked_Bad is 2, but neither sensor for leg 1
or 3 has been sensed

4. First_Marked_Bad is 3, but neither sensor for leg 1
or 2 has been sensed

CMD_disable_enable=ENABLE
AND
TDM_started = TDM_YES

NOT(CMD_disable_enable=ENABLE
 AND
 TDM_started = TDM_YES)

TDM_event_enabled= TDM_YES TDM_NO

Condition

Modes
Before_event TRUE FALSE FALSE FALSE
Event_gen NOT(TD_Sen_1)

AND
NOT(TD_Sen_2)
AND
NOT(TD_Sen_3)

TD_Sen1 TD_Sen2 TD_Sen3

First_Marked_Bad= 0 1 2 3

Condition

Source Event Destination
Before_event @T(TDM_event_enabled = TDM_YES) Event_gen
Event_gen @T(TDM_event_enabled = TDM_NO) Before_event

TDM_Modes

Modes
Before_event FALSE TRUE
Event_gen TDM_started = TDM_YES

AND
((First_Marked_Bad = 1
 AND
 (TD_Sen_2 OR TD_Sen_3))
OR
 (First_Marked_Bad = 2
 AND
 (TD_Sen_1 OR TD_Sen_3))
OR
 (First_Marked_Bad = 3
 AND
 (TD_Sen_1 OR TD_Sen_2)))

First_Marked_Bad = 0
OR (First_Marked_Bad = 1
 AND
 NOT(TD_Sen_2 OR TD_Sen_3))
OR (First_Marked_Bad = 2
 AND
 NOT(TD_Sen_1 OR TD_Sen_3))
OR (First_Marked_Bad = 3
 AND
 NOT(TD_Sen_1 OR TD_Sen_2))

TDM_thruster= DISABLE ENABLE

Condition

TD_1 AND
TD_Last_1

NOT(TD_1 AND
TD_Last_1)

TD_Sen1= TRUE FALSE

TD_2 AND
TD_Last_2

NOT(TD_2 AND
TD_Last_2)

TD_Sen2= TRUE FALSE

TD_3 AND
TD_Last_3

NOT(TD_3 AND
TD_Last_3)

TD_Sen3= TRUE FALSE

Condition

Condition

Condition

Figure 4. Behavioral specifications for TDM

Table 2. Test vectors for TDM_thruster
Controlled
(Output)

Vector
DCP TDM_thruster TDM_modes

TDM_event
_enabled

CMD_dis
able_ena

ble TD_1
TD_Last_

1 TD_2
TD_Last_

2 TD_3
TD_Last_

3
First_Mark

ed_Bad
1 1 ENABLE Before_event TDM_NO DISABLE TRUE TRUE TRUE TRUE TRUE TRUE 3
2 1 ENABLE Before_event TDM_NO DISABLE FALSE FALSE FALSE FALSE FALSE FALSE 0
3 2 3 DISABLE Event_gen TDM_YES ENABLE TRUE TRUE TRUE TRUE TRUE TRUE 1
4 2 DISABLE Event_gen TDM_YES ENABLE TRUE TRUE TRUE TRUE FALSE FALSE 1
5 3 DISABLE Event_gen TDM_YES ENABLE TRUE TRUE FALSE FALSE TRUE TRUE 1
6 4 5 DISABLE Event_gen TDM_YES ENABLE TRUE TRUE TRUE TRUE TRUE TRUE 2
7 4 DISABLE Event_gen TDM_YES ENABLE TRUE TRUE TRUE TRUE FALSE FALSE 2
8 5 DISABLE Event_gen TDM_YES ENABLE FALSE FALSE TRUE TRUE TRUE TRUE 2
9 6 7 DISABLE Event_gen TDM_YES ENABLE TRUE TRUE TRUE TRUE TRUE TRUE 3
10 6 DISABLE Event_gen TDM_YES ENABLE TRUE TRUE FALSE FALSE TRUE TRUE 3
11 7 DISABLE Event_gen TDM_YES ENABLE FALSE FALSE TRUE TRUE TRUE TRUE 3
12 8 ENABLE Event_gen TDM_YES ENABLE FALSE TRUE FALSE TRUE FALSE TRUE 0
13 8 ENABLE Event_gen TDM_YES ENABLE FALSE FALSE FALSE FALSE FALSE FALSE 0
14 9 ENABLE Event_gen TDM_YES ENABLE TRUE TRUE FALSE TRUE FALSE TRUE 1
15 9 ENABLE Event_gen TDM_YES ENABLE TRUE TRUE FALSE FALSE FALSE FALSE 1
16 10 ENABLE Event_gen TDM_YES ENABLE FALSE TRUE TRUE TRUE FALSE TRUE 2
17 10 ENABLE Event_gen TDM_YES ENABLE FALSE FALSE TRUE TRUE FALSE FALSE 2
18 11 ENABLE Event_gen TDM_YES ENABLE FALSE TRUE FALSE TRUE TRUE TRUE 3
19 11 ENABLE Event_gen TDM_YES ENABLE FALSE FALSE FALSE FALSE TRUE TRUE 3

Test ID Monitored (Inputs)

4. Test vector generation

The SCR-to-T-VEC model translator transforms each SCR
table into a T-VEC subsystem. The T-VEC compiler converts
each subsystem into a set of primitive test specifications for
test vector generation [BBF97]. The translated and compiled
version of the TDM_thruster requirement includes 11 test
specifications. The test vector generator attempts to determine
two test vectors for each test specification based on a test
selection strategy derived from the concept of domain testing
theory. The test generation produced 22 test vectors, one for
the low-bound and one for the high-bound values of the 11 test
specifications. Table 2 shows a tabular representation of the 19
unique test vectors produced for TDM_thruster. Test vectors
with duplicate input and output values derived from different
test specifications are reduced into a unique set of test vectors.
The test vectors include 10 monitored variables and 7 term
variables (not shown in the table). The test values shown in
Table 2 reflect how the test generator systematically selects
low-bound and high-bound test points at the domain
boundaries. The input value ranges and constraints (e.g.,
relational operators) of the specification define the domain
boundaries. For example, vector # 1, First_Marked_Bad = 3 is
based on high-bound values of the data type range of
SensorIDType, while vector # 2, First_Marked_Bad = 0 is
based on the low-bound for the data type range. The remainder
of the test cases, specifically test vectors three through 19 are
associated with the TDM_modes = Event_gen. These cases
systematically cover the cases for each combination of the
sensor values for legs one, two, and three, for the various
possible situations when a different sensor leg is marked bad.

5. Test driver generation and execution

The last step in the process produces test drivers that
execute against the code. The test driver generator combines
test driver schemas, user-defined object mappings and test
vectors to produce test drivers as illustrated in Figure 5. The
test driver schema encodes an algorithmic pattern for test
execution for the specific test environment. The object
mappings relate model variables to the implementation
objects. The test driver generator creates test drivers by
repeating the execution steps defined in the schema for each
test vector. There are typically four primary steps for executing
each test case:

• Set the value of the test output to some value
other than what is expected

• Set the values of the test inputs
• Cause execution of the test
• Retrieve and save the results of the test execution

Test driver schemas describe how to accomplish these steps
for a specific testing environment using a small language that
accesses information about the specification model, data
objects, types, ranges, test values, and user customizable
information. A schema also describes the form of expected
outputs to support results analysis.

An existing C test driver schema was used to produce the
test driver file TDM_thruster.c, which is the main program for
the test. TDM_thruster.c is compiled and linked with
sam_Touchdown_Monitor.c (the actual C module for the
TDM software). The test driver TDM_thruster.c performs
some initialization, sets the inputs, calls the subsystem under
test, and stores the resulting output.

MSDEV
NT Environment

Retrieve
Outputs

Load
Inputs

Test Vectors

Algorithmic pattern

Test
Inputs

Global init;
Forall tests

init target;
set output invalid;
set inputs;
execute SUT;
get outputs;
store output;

endforall

sam_
Touchdown_

Monitor.c

Object Mappings

Test
Driver

(TDM_thruster.c)

“C” Test Driver Schema

Actual
Outputs

Figure 5. Elements of a test driver

The generated test drivers were executed on a Windows NT
platform. The initial execution with the original test driver
model did not identify any failure, because the test driver did
not operate like the actual code. A real-time multi-tasking
executive periodically calls the TDM code. Continuous calls to
the entry point can propagate and latch state data. The latched
data can inadvertently signal a shutdown of the thruster.

The original test driver called the main entry point once per
test vector, and could not propagate the state data that caused
the latched data to be used by the TDM software. A minor
modification was made to the test driver schema to simulate
the way the multi-tasking executive would call the TDM entry
point. This approach for calling the subsystem under test is
commonly used with other TAF schemas (e.g., MATRIXx test
driver schema) to propagate state data. This modification to the
test driver schema produced a test driver that made two calls to
the main entry point. The execution of the new test driver
resulted in a failure that emulated the situation where state data
would propagate and latch into a particular state. The test that
uncovered the failure scenario is associated with the modeled
requirement First_Marked_Bad, defined in Figure 4.

6. Summary

The TAF approach for automated model-based testing was
applied to the Mars Polar Lander Touchdown Monitor
software. The SCRtool was used to model textual
requirements. The TAF toolset was used to translate the
model, while T-VEC generated test vectors and test drivers.
The TAF team traveled to the LMAO site and was able to use
the toolset to identify an error that is the probable cause of the
pre-mature shutdown of the Touchdown Lander thrusters.
These results suggest that the TAF approach has the potential
to provide more standardized and thorough testing for
verification of critical software and system functionality.

6.1 Other applications and results

The core capabilities underlying this approach were
developed in the late 1980s and proven through use in support
of FAA certifications for flight critical avionics systems
[BB96]. The approach supports requirement-based test
coverage mandated by the FAA with significant life cycle cost
savings [Sta99; Sta00; Sta01]. The approach reduces cost,
effort, and cycle-time by eliminating requirement defects and
automating testing [Saf00]. Safford’s presentation summarized
the benefits:

• Better quality requirements for design and
implementation help eliminate rework in those
phases as well as during test

• Verification modeling can reduce the time
normally spent in verification test planning by up
to 50 percent

• Test generation from a verification model can
eliminate up to 90 percent of the manual test
creation and debugging effort

• Both the number of test cases and the phasing of
their execution can be optimized, eliminating test
redundancy

• A known level of requirements coverage can be
planned, and measured during test execution

The approach and tools have been used for modeling and
testing software and systems. It has been applied to functional
security testing [BBNC01], as well as, critical applications like
telemetry communication for heart monitors, flight navigation,
guidance, autopilot logic, display systems, flight management
and control laws, airborne traffic and collision avoidance. The
approach supports automated test driver generation open (e.g.,
C, C++, Java, Ada, Perl, PL/I, SQL) and proprietary
languages.

7. Acknowledgements

This work has been a cooperative effort by various
individuals within Lockheed Martin Aeronautics Company
and the Software Productivity Consortium.

8. References
[BB96] Blackburn, M.R., R.D. Busser, T-VEC: A Tool for

Developing Critical System. In Proceeding of the
Eleventh International Conference on Computer
Assurance, Gaithersburg, Maryland, June 1996.

[BBF97] Blackburn, M.R., R.D. Busser, J.S. Fontaine,
Automatic Generation of Test Vectors for SCR-Style
Specifications, In Proceeding of the 12th Annual
Conference on Computer Assurance, Gaithersburg,
Maryland, June 1997.

[BBNC01] Blackburn, M.R., R.D. Busser, A.M. Nauman, R.
Chandramouli, Model-based Approach to Security
Test Automation, In Proceeding of Quality Week
2001, June 2001.

[HJL96] Heitmeyer, C., R. Jeffords, B. Labaw, Automated
Consistency Checking of Requirements
Specifications. ACM TOSEM, 5(3):231-261, 1996.

[Sta99] Statezni, David, Industrial Application of Model-
Based Testing, 16th International Conference and
Exposition on Testing Computer Software, June 14-
18, 1999.

[Sta00] Statezni, David. Test Automation Framework, State-
based and Signal Flow Examples, Twelfth Annual
Software Technology Conference, April 30 - May 5,
2000.

[Sta01] Statezni, David. T-VEC’s Test Vector Generation
System, Software Testing & Quality Engineering,
May/June 2001.

[Saf00] Safford, Ed L. Test Automation Framework, State-
based and Signal Flow Examples, Twelfth Annual
Software Technology Conference, April 30 - May 5,
2000.

[TVK90] Tsai, W.T., D. Volovik, T.F. Keefe, Automated test
case generation for programs specified by relational
algebra queries, IEEE Transactions on Software
Engineering, 16(3):316-324, March 1990.

[WC80] White, L.J., E.I. Cohen, A Domain Strategy for
Computer Program Testing, IEEE Transactions on
Software Engineering, 6(3):247-257, May, 1980.

