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Abstract

This paper describes the specification-based testing
and analysis tools, and associated processes, that were
used to develop and certify safety-critical avionics
systems in an industrial organization. These tools
comprise an integrated development environment
supporting specification acquisition and analysis,
requirement-based automatic test vector generation, test
coverage analysis, test driver generation, and test results
analysis. The paper describes the specification model,
method, development environment, and tool qualification
approach. The capabilities of the automatic test
generator are compared with foundational concepts and
related  testing strategies and mechanisms.

1. Introduction

This paper describes the T-VEC (Test VECtor)
system that was used to develop and certify two avionics
systems. These certifications were conducted by the
Federal Aviation Administration (FAA) based on
DO-178A - Software Considerations in Airborne Systems
and Equipment Certification [24] (now DO-178B). These
certification guidelines emphasize a software engineering
approach, where requirement-based testing and analysis
are key to supporting the assurance arguments required
for certification.

T-VEC is an integrated development environment and
associated specification and verification method [3; 4].
One of the key tools of the T-VEC system is an automatic
test vector generator; it determines test inputs, expected
outputs, and a mapping of each test to the associated
requirement, directly from formal specifications. It has
been documented that testing can account for 40% to
70% of the development effort [5; 14]. Testing a critical
system can require tens or hundreds of thousands of test
cases. A test vector generator that determines expected
output values can reduce the testing effort as compared to

a test case generator, where the expected output values
must be determined manually.

1.1 T-VEC overview

Figure 1 shows the T-VEC Environment. It supports a
process that produces a hierarchy of requirement and
design specifications. Graphical editors are employed in
the acquisition of different aspects of the specification.
The T-VEC compiler checks syntactic and semantic
information during the compilation of the requirement
specification. The test vector generator derives test
vectors from the system knowledge. Its automatic
coverage analyzer ensures that every unique requirement
specification is exercised by at least one test vector.
T-VEC also automatically generates test drivers and
documentation, relieving engineers from such tedious
tasks. Finally, T-VEC provides project and configuration
management tools specifically developed to support the
method.

1.2 T-VEC in operation

T-VEC is operational today. It has been used to
develop flight-critical, real-time, embedded systems since
1989. As a result of this experience, T-VEC evolved and
was tailored to aid engineers in applying formal
specifications by representing them using graphics with
textual annotations. T-VEC was applied to a portion
(approximately 50 subsystems) of a Traffic and Collision
Avoidance System (TCAS), which was FAA-certified in
March of 1990. T-VEC was applied to the entire MD90
(McDonnell Douglas) Electrical Power System Variable
Speed Constant Frequency (VSCF) system that was
FAA-certified in January of 1995. T-VEC was also used
in the development of component libraries for a family of
avionics display systems. T-VEC was also qualified in
support of the certification requirements (see Section 5).

Copyright (c) 1996 Institute of Electrical and
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the Proceedings of COMPASS 96.
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Figure 1. T-VEC environment

1.3 Organization of paper

Section 2 describes how T-VEC supports the
development of a critical system. Section 3 provides an
overview of the T-VEC specification model to support
the explanation of the test generation mechanisms.
Section 4 describes the T-VEC test vector generator,
compares it to other related test data generators, and
identifies the unique characteristics of the tool. Section 5
discusses the qualification of tools used in critical system
development. Section 6 provides a summary of T-VEC
capabilities and benefits.

2. T-VEC’s role in critical system
development

Leveson argues that an overall systems approach is
required for developing a safety-critical application [20].
Such an approach can potentially provide high assurance.
However, the infeasibility of quantifying the reliability
and assurance levels of software is described by Miller,
Butler, and Finelli [6; 21]. This section describes a
framework that is used to explain T-VEC’s role in
supporting a high assurance software development
process.

To certify a system based on DO-178B guidelines,
system developers are permitted to define their own
software life-cycle processes. The guidelines identify
some basic types of software development artifacts that
must be produced. DO-178B also defines assessment
criteria for these software artifacts to ensure that the
development results in a safe system.

DO-178B guidelines emphasize the verification
process and results as the primary means for providing
high assurance evidence. Verification is a process to
ensure that one level of specification complies with
another. A particular design must satisfy a requirement
specification, and the implementation must comply with
the design. Verification relies on a set of complementary
subprocesses, including testing, analysis, and reviews.
Testing is the process of exercising a system or system
component to verify that it satisfies specified
requirements and to detect errors. Analysis provides a
repeatable means for producing evidence of correctness,
and reviews provide a qualitative assessment of
correctness [24].

Formal methods are formal techniques that support
verification and can be used to ensure that the captured
specifications are consistent and complete, and satisfy
critical system properties. Formal specification
languages, methods, and tool systems, like Z [27], VDM



[19], and PVS [11], continue to expand in scope and
capabilities. As the tools and techniques underlying
formal methods mature, they will most likely play a
larger role in the development of critical systems because
they help identify specification errors.

Table 1 provides a framework that relates the primary
assurance techniques of verification with the general
types of software artifacts. The Technique/Process
column lists some assurance techniques or processes that
can be used to produce and assess artifacts during
development. Under Software Development Artifacts, an
“x” is used if a technique is strongly associated with the
artifact; an “o” means that these artifacts may be weakly
associated with the technique or process, depending on
the specific development method (e.g., modeling and
simulation are typically used to gain a better
understanding of the requirements, but could be used to
help make design choices). The Comments column gives
a brief description of the assurance technique or process.
Rushby describes how several of these techniques
support verification [25].

Table 1 also indicates those assurance techniques that
are supported by the T-VEC tools and method. Figure 2
highlights the relationships (in shaded boxes) between the
tools and the artifacts.

T-VEC can symbolically execute specifications,
allowing users to execute scenarios to help users assess a
captured requirement specification. The test vector
generation mechanism also performs typechecking and
consistency checking of requirement specifications (see
Section 4).

The T-VEC compiler ensures that the requirement
specifications are well-formed, consistent, and complete
(with respect to T-VEC’s specification model [see
Section 3]). The test vector generator automates most of
the testing process, and the coverage analyzer ensures
that there is at least one test for every requirement. A
manual analysis process is used to verify that traceability
linkages are completely and consistently mapped from
each requirement specification to some design
specification and associated implementation construct. A
check is also made to verify that every implementation
construct is associated with a requirement specification.
Finally, T-VEC has been integrated with several test
execution environments; test are downloaded to the target
hardware, executed, and the results are uploaded and
analyzed automatically to verify that the implementation
passes every test.

Table 1. Mapping assurance techniques to software artifacts
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Modeling and Simulation x o o
Helping the customer get the right 
specifications

Consistency and 
Typechecking x o x o Consistent with the specification model

Correctness Analysis x o x
Proving the specification states what it is 
required

Proving Properties x o x
Proving that critical properties exist in the 
specification

Model Checking x o x Verification of temporal properties
Design Refinement x x x x Requirement traceability to desgin
Code Refinement x x x x Design traceability to code
Testing x x x x x Requirement-based testing

Coverage Analysis x o x o x x x
All tests for all requirements cover all the 
code

Legend: x = strong correlation with artifact o = weak correlation with artifact
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{
    double med, var, sd, mean;
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}
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Figure 2. Software development artifacts and relationships to support high assurance

3. T-VEC specification model

This section focuses on the specification model
concepts that are relevant to test vector generation.

3.1 Hierarchical specification model

There are two main principles that characterize the
formalization of T-VEC’s hierarchical specification
process [8]:

• Every system is a subsystem of some higher
level system (i.e., a parent system) [2; 9].

• Input and output objects of any given subsystem
are defined a priori by its parent system.

The hierarchical specification model is a means for
managing complexity in system development. It is the
basis for defining the hierarchical relationships between
levels of abstraction. The model supports functional
decomposition and the specification of components
developed using object-based concepts.1

                                                          
1A set of reusable T–VEC class hierarchies (approximately 50

subsystems in 8 classes (e.g., Digital IO, Analog IO, Brightness
Control, Builtin Test) were developed and reused in 5 different display
products. This form of reuse, where the specification, design, test,
documentation, reviews and analysis results, and code are all reused
could have significant cost saving when applied to critical systems.

Figure 3 provides an abstract representation of
T-VEC’s hierarchical specification process.
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Figure 3. Hierarchical specification process

An architecture is the specification of the
organization of “black boxes” (e.g., task, procedure,
function, or a component that encapsulates objects) and
associated input and output interfaces. Subsystem is the
T-VEC term used for any type of “black box.” A new
lower-level architecture is designed to satisfy the
allocated system requirements. Its new subsystems and
data interfaces imply the need for a new set of derived



requirements (i.e., requirements derived from design
choices associated with the new subsystems and their
interfaces. Figure 4 shows an example of the hierarchical
specification process.

For each subsystem in a parent architecture, there
must be functional requirement specifications for each
output. Consider the Display Task in Figure 4. For each
functional requirement not directly implemented at a
given level of the system, a data transformation sequence
must be specified representing its functional design. A
data transformation sequence identifies ordered
functional mappings from the inputs to the output (i.e.,
the inputs and output of Display Task). For example, the
input object HW Input is transformed by an IO mapping
to some intermediate form before Hysteresis and Filter
processing are performed resulting in Altitude. When a
new lower-level architecture is designed, each data
transformation is represented by a subsystem in that
architecture. The program calling structure for Display
Task identifies the calling order, from left to right, of the
subsystems (procedures) in the new architecture. The
same specification process applies to each new
subsystem.

3.2 Requirement specification model

T-VEC’s requirement specification model provides
the basis for identifying and organizing the functional
requirements for a subsystem. Busser and Blackburn
define the formal definition of a functional requirement
as the basis for the requirement specification model [9,
2]. Definition:

the set of all functional relationships, for all
points of temporal relevance, for a given
output object

The functional requirements model can be related to
the precondition and postcondition model of Hoare [16],
as shown in Figure 5. A relevance predicate groups all
the precondition constraints associated with each
functional relationship. Each relevance predicate
characterizes the data and temporal constraints on the
objects of the input space. A functional relationship
characterizes an object of the output space as a function
of the inputs.

The following provides a brief summary of the
specification language supported by the system
knowledge compiler and test vector generator. The
specification of functional requirements is represented
using four types of diagrams. Figures 6 and 7 show an
example based on the Filter subsystem shown in the New
Architecture of Figure 4.

Data structure diagrams are used to specify the input
and output objects of a given subsystem. Each leaf node

of a possibly complex data structure must minimally
specify the type, domain constraint, and data
representation of the object in a corresponding textual
annotation. The objects specified in a given diagram are
those that make up the subsystem interface design of the
parent architecture. For example, the inputs and output
shown in the top-level functional requirement diagram
are consistent with the interfaces to the Filter subsystem
shown in the New Architecture (Figure 4). T-VEC
supports the base types: Boolean, enumeration, unsigned,
integer, float, and string. The user can define arrays,
records, and user-defined types. In addition, objects can
be bit packed and accessed as record structures.

Functional requirement diagrams represent a
hierarchy of functional relationships and constraints. The
top level, or context view, abstractly represents the
semantics of the parent’s architecture diagram for that
subsystem. These diagrams show the input-to-output
mapping for each functional relationship for each output
of the subsystem and provide a reference to a
corresponding relevance predicate. Each functional
relationship specification must include a traceability
reference to the system requirement from which it was
derived and the implementation procedure where it is or
must be implemented.

Functional relationships expressions are specified in
terms of primitive operators: bit operations, assignment,
addition, subtraction, multiplication, division,
exponentiation, absolute value, log, and trigonometric
functions. Subsystems can be treated like functions, even
if the subsystem specifies the requirements for complex
objects; therefore, subsystems can be referenced within a
functional relationship or in a relevance predicate. A
functional relationship can also be expressed in terms of a
forall operator when specifying a relationship governing
some or all elements of a specified range of array
elements.

Logic structure diagrams can be used to specify
parameterized predicates that define constraints on the
input space. Logic structures can be referenced anywhere
within a relevance predicate of a subsystem and are
inherited by all lower-level children subsystems in the
specification hierarchy. Logic structures can be used for
multiple sets of objects within a subsystem. Figure 7
shows logic structures that are referenced in relevance
predicate tables. The logic structure is interpreted as
follows: the predicate Coast is true if the predicates Input
Suspect and History Valid are both true (conjunction); the
predicate Input Suspect is true if either predicate Input
Bad or Input Unknown is true (disjunction - inclusive or).
A predicate expression can be defined using primitive
operators, relational operators (i.e., =, ≤, <, ≥, >, and
NOT) or as a function reference to a subsystem.
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Relevance predicate tables associate logic structures
with functional relationships A relevance predicate table
must exist for each functional requirement diagram.
Logic structure references are on the left side of the
double bar of a relevance predicate table and functional
relationships are on the right. Simple predicate
expressions can be specified directly in the relevance
predicate table. Figure 7 provides an interpretation. Blank
table entries under predicates indicate a don’t care
situation.

4. Automatic test vector generation

This section focuses on the mechanism for
specification-based test generation. Gourlay’s [15]
mathematical framework for testing confirms the need for
specification-based testing. However, based on a survey
of 12 industrial applications of formal methods, there
were no tools used to automatically generate tests from
the specifications that were developed and analyzed in
support of the system verifications [10]. Such tools are
valuable in reducing manual effort and preventing manual
errors in the testing process, while freeing developers to



focus on the more complex task of specification
development and analysis.

Specification-based testing provides confidence that a
program implements the requirements for some system if
every test, derived from the specifications, executes
correctly in the target environment (i.e., computes the
appropriate expected results). The actual confidence is
based on the adequacy of the tests to reveal errors in an
implementation that contains faults. Test adequacy is

based on the test selection strategies and the
completeness of the tests with respect to the specification.
In T-VEC, test set completeness is determined by
checking that all specified requirements have at least one
test vector. A test vector includes the test input values,
the expected output value, and a reference to the
associated requirement specification. The test coverage
analyzer checks the requirement reference in the test set
against the set of all requirement specifications for a
subsystem. (see Test coverage analyzer in Figure 2).
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Before describing the test selection strategies and
associated test generation mechanism, some verification
process constraints and assumptions need to be stated
because testing alone cannot be used to assess the
completeness or consistency between a specification and
an implementation.

4.1 Verification constraints and assumptions

The specification is assumed to be correct, although
as discussed later in this section, the test vector generator
can detect inconsistencies in the specification. To provide
assurance that the implementation is complete and
consistent with respect to the specification, the following
manual review processes were used to support the FAA
certifications in which T-VEC was used:

• Every functional relationship (FR) in the
specification must be mapped to an output
assignment in the implementation, and there
must be a 1-to-1 mapping between the relevance
predicate constraints of the FR and the
conditions on the program path to the
assignment.

• For every function/procedure call in a program,
there must be a consistent interface mapping to a
“lower-level” subsystem specification (this
allows the same mechanisms to be used for all
levels of the software system).

It is assumed that an implementor follows these rules
when coding from a formal specification. It is also
assumed that there is a strong correlation between the
relevance predicates and path controls guarding the
output assignments of a program even if a human fails to
detect an inconsistency between the specification and
implementation.

4.2 Test selection strategy

T-VEC is as an oracle/error-based testing mechanism
based on Richardson’s et. al [23] classification of
specification-based testing approaches; such approaches
extend implementation-based testing techniques to formal
specifications. This subsection relates implementation-
based testing concepts and strategies to the T-VEC test
selection mechanisms.

Using Zeil’s [31] modified version of Howden’s [17]
definitions: a computation error occurs when the correct
path through the program is taken, but the output is
incorrect due to faults in the computation along the path.
A domain error occurs when an incorrect output is

generated due to executing the wrong path through a
program. Howden further categorized domain errors as
path selection errors or missing path errors [17].
Specification-based testing can detect missing path
errors; however, in general, we assume that missing and
extraneous paths in the code will be detected during a
manual review process. T-VEC mechanisms can detect
both domain and computation errors.

Selecting test data to reveal domain errors. Based on
the assumption that there is a strong correlation between
predicates in the specification and path control conditions
in the program, the test selection strategies are discussed
in terms of domain testing theory concepts. White and
Cohen [29] proposed domain testing theory as a strategy
for selecting test points to reveal domain errors. It is
based on the premise that if there is no coincidental
correctness, then test cases that localize the boundaries of
domains with arbitrarily high precision are sufficient to
test all the points in the domain.

T-VEC selects test data for subdomains of an input
space based on the constraints of a relevance predicate.
As shown in Figure 8, a relevance predicate is internally
represented in disjunctive normal form (i.e., disjunctions
of conjunctions). A set of test vectors is generated for
each disjunction of a relevance predicate (referred to as
the domain convergence paths [DCP]). A DCP is
characterized by a conjunction of predicates for one
functional relationship. The DCP predicates should map
to the path conditions in a corresponding program.

Predicate Node
(=,≤,<,≥,>,NOT)

Functional Relationship Node
(+,-,*,/,**,abs,
 ln,trig,function)

Relevance Predicate
for Functional
Relationship
(set of disjunctions)

Note: There exists 1 or more domain convergence
 paths for each functional relationship.

Domain Convergence Path
(Conjunction of predicates)

Figure 8. Domain convergence path

A subdomain convergence algorithm is used to
determine a DCP subdomain. If a nonempty subdomain
exists for a DCP, then the input values associated with a
test point are selected for the borders of the subdomain.
A border is defined by evaluating the predicates of a
DCP for a set of input values. For example, test points for
numeric objects are selected for both upper and lower



domain boundary values. This results in test points for
subdomain borders based on all low-bound values and
high-bound input values that satisfy the DCP predicate
evaluation. If domain errors are not revealed, the
selection of extreme values provides test points to detect
computation errors (e.g., overflow, underflow, or
incorrect calculations). Additional test vectors are
generated for multispace variable and operators (e.g., if x
has domain [-100...100] and is used with an absolute
value function, then the variable’s subdomain is
partitioned to select test points from both subdomains
[-100...0] and [0...100]). Intuitively, this specification-
based domain testing mechanism provides confidence
that every path of the implementation is correct with
respect to every DCP and functional relationship of a
subsystem.

Problem domain test selection heuristics. A heuristic
mechanism was added to the test generator to control the
order of the selection of borders of subdomain
boundaries based on three categories of predicates. By
distinguishing the predicate types, the test points are
selected on boundaries that are more strongly correlated
to the problem domain boundaries. Predicates in the DCP
are categorized by clause type. The clause types include:

• ground term: an input variable used in a relation
with a constant

• ground clause: a variable and/or function used
in a relation with a constant

• clause: a relation between any combination of
two or more input variables and/or functions

Ground terms relate an input variable to a constant;
this constant is likely to have significant meaning in the
problem domain. For example, in TCAS, if an aircraft is
above 10,000 feet (ground term), and if an aircraft is
within 2,500 feet of altitude of your own aircraft altitude
(ground clause), it is a candidate for tracking by TCAS.
Therefore, ground terms are used to initialize the
subdomain for a DCP before a ground clause or clause is
used to constrain the subdomain.2

Selecting test data to reveal computation errors.
Some inputs to the functional relationship are not
constrained by the DCP predicates. For each test point
derived from DCP predicates, there are additional test

                                                          
2The TCAS Collision Avoidance Logic, developed by two

independent organizations, is a pseudo-code specification that TCAS
system developers must implement in their system. These
specifications have evolved over the last 20 years. A change was made
between version 5 and version 6 that specified unreachable code. To
test the code, the specifications were reverse-engineered into T-VEC
specifications. T-VEC’s use of domain boundaries helped identify a
complex combination of constraints that were inconsistent in version 6.
Values inside the boundaries would not have detected this
inconsistency.

points derived for unconstrained inputs not referenced in
the DCP based on all domain boundary value
combinations (i.e., low bound and high bound for
numeric objects, sets for enumerated variable, etc.). By
selecting the extreme value combinations, there is a
possibility to detect computation errors in the output
calculation. This test selection strategy is used to detect
computation errors or show that unconstrained inputs do
not affect the output for a program path.

Computing the expected output. The functional
relationship is applied to each input value set to
determine the expected output value. The value is
checked against the subrange specification of the output
variable, if the value is within the specified range,  a test
vector is produced that includes the inputs, input types
and representation information, the expected output with
its type information, and the requirement DCP.

Specification inconsistencies are identified when the
test coverage analyzer cannot find a complete mapping
between the generated test vectors and the set of all DCP
combinations in the source specification for each
subsystem. Specification inconsistencies result when the
test generator does not produce test vectors; this occurs
when:

• The convergence process cannot determine an
input subdomain for a DCP because there is an
inconsistent set of predicates in the DCP.

• The expected output value, computed using the
functional relationship with the input test values,
is not correct with respect to its subrange
specification.

There is an interactive specification analysis tool
(“debugger”) that can be used to determine the source of
a specification inconsistency.

4.3 Relationship to other strategies

Domain testing strategies have focused on programs
rather than specifications, but the foundational concepts
can be related to specification-based test selection. The
initial domain testing strategy proposals [12; 29], had
some limitations and flawed arguments as described by
Zeil [31]. Zeil et al. [30] describes an extension to
support nonlinear calculations for linearly independent
predicate expressions. Zeng and Weyuker [18] describe a
simplified strategy that reduces the number of test points
and addresses the limitation of programs with variable
defined over continuous domains.



In 1990, T-VEC mechanisms [4] supported the
extension addressed by Zeng and Weyuker [18]:

• For a discrete input space with open borders
defined by > and < relational operators, the
selection of test points is based on the floating
point representation of the input objects with
respect to their computed accuracy of the
calculations used in the predicate expressions.

and extended Zeil’s et al. [30] contributions to address
the needs of real-world applications, by supporting:

• Borders associated with predicate expressions
that are linearly dependent nonlinear
inequalities. As is discussed in Afifi et al. [1],
real-world problems (e.g., TCAS, global
navigation) contain nonlinear constraints and
functions.

As an oracle-based mechanism, T-VEC deviates from
the implementation-based strategies in one way.
Implementation-based strategies select test points ON the
borders (within the subdomain) and OFF the borders in
an adjacent subdomain. T-VEC selects only ON border
test points, because it cannot determine the expected
output for an OFF border test point in an adjacent domain
based on the current DCP and functional relationship.
The expected output for an OFF border test point in an
adjacent subdomain should be covered by another
relevance predicate of the specification.

4.4 Relationship to other test generators

T-VEC is a mechanized instance within a general
framework for specification-based testing as described by
Stocks and Carrington [26]. It uses specification
categories (see Section 4.2) to select test data based on a
test point selection strategy. Convergence operations,
based on the specification precondition, are used to
reduce the input space, and test point heuristics are used
to select test points.

Some other test generation systems use functional
specifications, where a precondition defines constraints
on the function’s input domain. The characteristics that
distinguish the systems include:

• The ability to generate test vectors versus test
cases

• The ability to select test data for specifications
characterized as nonlinear inequalities with
dependent variables

• The mechanization of the test generator

• The test point selection heuristics and
mechanisms

Some specification-based test generators produce test
cases, like the system “T” developed by Poston [22]. Tsai
et al. describes a test generator for a relational algebra
specification [28], where the specification precondition is
limited to a set of linear inequalities.

Prolog-like engines were used by Busser and
Blackburn [4], Denney [13], and Bernot et al. [7] to
automate test generation. In all cases, additional control
strategies were required to overcome some of the
limitations of Prolog (i.e., the Horn clause representation,
typeless language). The executable nature of the
specification language supports the selection of the test
input values and the computation of the expected output
value.

4.5 Unique characteristics of T-VEC test vector
generator

The distinguishing characteristics of T-VEC include:

• T-VEC generates test vectors for specifications
characterized by nonlinear inequalities, where
both sides of the inequality can be expressions
with dependent variables, rather than being
limited to linear inequalities with constants.

• T-VEC generates test vectors involving complex
structures and arrays for both input and output
spaces.

• T-VEC generates test vectors using selection
heuristics (e.g., limit the number of
combinations of unconstrained input variable to
all low-bound, and all high-bound values).

• T-VEC generates test vectors for a hierarchy of
specifications, supporting integration testing of a
high-level subsystem, without regenerating all
the test vectors for each referenced lower-level
subsystem. This mechanism precludes the
combinatorial explosion associated with tests
generated from the combination of constraints in
a hierarchy of subsystems, while ensuring
complete coverage when following a bottom-up
testing strategy.

The concept of hierarchical specification is
fundamental to the scalability of both the specification
method and the associated verification process.  T-VEC
promotes a hierarchy of specifications to manage
complexity, changeability, and reuse, as well as
scalability.



4.6 Automated test process

After completing the specification and coding
processes, developers submit the subsystem for testing.
T-VEC executes the following procedure automatically
relieving engineers from many manual tasks and reducing
the possibility of manual error (refer to Figure 2):

• T-VEC checks and compiles, as needed, the
system knowledge to ensure that it is up-to-date
with the graphically entered specification.

• If it is error free, T-VEC generates test vectors
from the system knowledge.

• T-VEC checks to ensure that there is at least one
test vector for every requirement specification
DCP.

• If there is full test coverage, T-VEC generates
and submits a test driver to the target hardware.

• The actual outputs (associated with the test sets)
are automatically uploaded from the target test
environment and compared to the expected
outputs (from the test vectors).

4.7 Test vector generation example

This section illustrates the mechanisms of the test
vector generator using an example specification fragment.
Table 2 shows an example of a relevance predicate.
Clause types are identified in the second column.

Table 2. Relevance predicate example

Predicates Clause Type
 x ≥ 5 AND  ground term
 x + y ≥ 6 AND  ground clause
 x - y ≤ z AND  clause
 sin(z) ≥ 0.5  ground clause

Table 3 provides a way to view the subranges on the
inputs during the domain convergence process. The steps
of the convergence process are numbered to support the
following discussion of the process. After every
operation, there is a propagation step that is used to
ensure that all constraints are still satisfied. If any
constraint cannot be satisfied, then the specification is
inconsistent.

• Step 0 shows the initial domain for each
variable.

• Step 1 limits the domain based on all ground
terms to ensure that the selected test points are
near a subdomain boundary.

• Step 2 limits the domain based on ground
clauses. To satisfy the condition x + y ≥ 6,
the subrange of y must be modified. To satisfy
the constraint sin(z) ≥ 0.5 there is a
change of the lower bound of z.

• Step 3 limits the domain based on all clauses;
there is no effect because the subrange of
x - y, which is [-5...9], contains a point that
satisfies the constraint.

• At Step 4, when the effects of propagation are
stable, T-VEC selects a test point at the domain
boundaries. On the first pass, the low bound
values of the variables’ domains are selected.
This process is repeated for the high bounds of
the inputs. Depending on the test selection
heuristic mode, one or all values of enumerated
type objects are selected, each producing a
unique test vector.

• At Step 5, the constraints on the converged
subdomains must be propagated after each test
point is selected.

• At Step 6, once all of the propagation is stable,
another test point is selected.

This process continues until test points have been
selected for all the inputs in the constraint.  The inputs
are then used to compute the expected output for the
output variable.

Detecting specification inconsistencies. This test
vector generation mechanism also detects specification
inconsistencies; for example, suppose that constraint
x - y ≤ z was x * y ≤ z. There would not be a

solution to the problem, because x * y  would have a
subrange of [5...50] after Step 4, which could never
satisfy the subrange for z.

5. Tool system qualification

Tools can help in the development of critical systems,
but tool qualification is required by most certification
authorities and defense agencies. Tool qualification is
required by DO-178B when tools are used to eliminate,
reduce, or automate aspects of the development process.
The objective of qualification is to ensure that the tool
provides confidence at least equivalent to that of the
process(es) that has been reduced or automated.

T-VEC was subjected to qualification for two TCAS
releases as required by the FAA to support the
certification. The qualification process was used to
reverify the system when it was ported from the Sun
386i to the Sun SPARC architecture running a new
operating system.



Table 3. Domain convergence subrange trace

Domain Convergence Operations(Steps) Clause Input Variables

x y z
low 
bound

high 
bound

low 
bound

high 
bound

low 
bound

high 
bound

0) initial domain -10 10 0 10 -1.5707 1.5707
1) using ground terms x ≥ 5 5 10
2) using ground clause x + y ≥ 6 1 10

sin(z) ≥ 0.5 0.523 1.5707
3) based on clause x - y ≤ z 
4) select test point using x lower bound 5 5

5) propagate x - y ≤ z 4 10
6) select test point using y lower bound 4 4
7) propagate x - y ≤ z 1 1

T-VEC was qualified to demonstrate that valid test
vectors are reliably generated, satisfying every
disjunction of a relevance predicate for every functional
relationship of a given specification. The T-VEC
qualification process required verification of the system
knowledge compiler, test vector generator, coverage
analyzer, and test driver generators.

To verify the system knowledge compiler, several
subsystems were specified, and manual analysis was
performed to show that the generated results where
consistent and complete with the expected results. There
was also a coverage analysis activity which demonstrated
that all classes of specification data types, constructs, and
hierarchical relationships were included in the test
specifications. Similar verification processes were
performed for the coverage analyzer and test driver
generators.

The verification of the test vector generator was much
more extensive. The verification activities for the TCAS
certification (i.e., the first release of T-VEC) were based
on traditional verification and coverage analysis
processes. All specification constructs for all data types
were tested using domain testing principles. In addition,
all combinations of hierarchical specification
relationships were also tested and checked manually.

For the second and third releases, T-VEC was used to
test itself. Several unique specifications were created
using the T-VEC specification language. T-VEC’s
inference engine is based on Prolog-like semantics;
therefore, every operator of the language is a predicate.
This unique approach involved specifying the output of
each functional relationship as a constant or bound input
variable, representing the expected output. Therefore,
when the test vector generator computed the actual output
for a functional relationship, the final operation was an
equality predicate that checked the computed output with
the expected output. Manual coverage analysis
techniques were still used to show that all combinations

of specification constructs and data types were tested to
support the verification process.

6. Summary

This paper has described a software engineering
approach to critical system development that has been
used in an industrial engineering organization. Automated
tools played a fundamental role in supporting the formal
process. The automated testing process relieves engineers
from many manual tasks and reduces the possibility of
manual error. The use of graphics was key to making a
formal specification approach usable by typical engineers
in industrial organizations. It helped them focus on each
aspect of the specification individually, using one type of
graphic and annotation. The developers relied on the
tools to integrate the views. In addition, customers and
reviewers, like the FAA, were able to understand the
notations and processes with minimal training.

The automatic generation of test vectors and
automated coverage analysis provide a highly automated
verification process to support critical system
development with several benefits. T-VEC significantly
reduces the verification cost by eliminating most of the
manual testing effort. A test vector generator that
produces expected outputs reduces the test time and
effort as compared to a test case generator, where the
expected output must be determined manually. From a
customer or FAA-certifier perspective, the T-VEC
method and automation make the development process
very systematic. When the process is understood, it is
easy to determine the level of completion and compliance
with the DO-178B guidelines for any level of a critical
system.

The productivity benefits are best expressed in terms
of the customer’s expectation. On the last release of the
MD90 VSCF, there were 10 of the 73 subsystems
impacted resulting in 602 lines of code changed in 10



Ada packages. The prime contractor estimated the task at
6 months, based on software development efforts prior to
this program. The specification, implementation and
verification efforts were reduced to 4.5 weeks. The
primary reason for the reduction in time and effort was
because the test generation and execution were performed
automatically. Although the actual data is proprietary, in
all of the T-VEC releases to the prime contractor and
customer, no defects have been found in the software.
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