
Automatic Generation of Test Vectors for SCR-Style Specifications

Mark R. Blackburn Robert D. Busser
Software Productivity Consortium T-VEC Technologies
blackbur@software.org bobb@ns.upcyber.com

Joseph S. Fontaine
Software Productivity Consortium
fontaine@software.org

Abstract

This paper provides the basis for integrating the
Software Cost Reduction (SCR) specification method
with the T-VEC (Test VECtor) test vector generator
and specification analysis system. The SCR model is
mapped to the T-VEC model to support automatic test
vector generation for SCR specifications. The
T-VEC system generated test vectors for an example
SCR specification that was translated into the T-VEC
language. The relationships between the models and
the resulting test vectors are described. Two general
guidelines for the translation process were identified
that are fundamental for testing specifications that use
event operators and for structuring the specifications
to provide tests for all specified requirements.

1. Introduction

The benefits and cost savings of identifying
problems during the requirements development phase
are well known, and methods and tools have matured to
make this process feasible in industry [HLK95, BB96].
For high assurance systems, formal approaches are
being applied in industry. However, based on a survey
of 12 industrial applications of formal methods, there
were no tools used to automatically generate tests from
the specifications that were developed and analyzed in
support of the system verifications [CGR93]. Testing
can account for 40% to 70% of the development effort
[Bei83; GW94]. Testing a critical system can require
tens or hundreds of thousands of test cases.1 Such tools
are valuable in reducing manual effort and preventing
manual errors in the testing process, while freeing
developers to focus on the more complex task of
specification development and analysis. The

1 The last critical system developed with T-VEC, and certified by the
FAA, had 28001 test vectors used to test approximately 8000 lines of
code contained in 23 Ada packages.

combination of requirement and design specification
methods and tools with automatic test generation
technologies could significantly reduce the cost of
verification and testing. Such integration would provide
stronger arguments and benefits to use and further
advance specification-based methods and tools.

SCR was one of the methods surveyed in the survey
of formal methods industrial applications. It was
developed at the Naval Research Laboratory (NRL)
[Hen80]. The SCR method has a long history, and
other methods like the Consortium Requirements
Engineering Method (CoRE) [SPC93; FBWK92], have
evolved from the original SCR method. Enhancements
to CoRE have also been factored into the current
embodiment of the SCR method. More recently, NRL
has built tools to support specification acquisition,
simulation, and formal analysis [HLK95; HBGL95;
HJL96]. Powerful proof systems like PVS have been
used to check well-formedness properties in SCR
specifications [ORS95]. Model checking tools have
also been applied to SCR-style specifications [ORS95;
SA96]. These methods and tools are important in
helping to develop correct specifications. However,
there is still a need to assess that an operational system
complies with its specification. Testing can be used in
this type of assessment.

T-VEC is an integrated development environment
and associated specification and verification method
[BB96]. It was used to develop two avionics systems
that were certified by the Federal Aviation
Administration (FAA) based on DO-178A - Software
Considerations in Airborne Systems and Equipment
Certification [RTCA92] (now DO-178B). These
certification guidelines emphasize a software
engineering approach, where requirement-based testing
and analysis are key to supporting the assurance
arguments required for certification.

One of the key tools of the T-VEC system is an
automatic test vector generator; it determines test

Copyright (c) 1997 Institute of Electrical and Electronics
Engineers. Reprinted, with permission, from the Proceedings
of COMPASS 97.

inputs, expected outputs, and a mapping of each test to
the associated requirement, directly from formal
specifications. A test vector generator that determines
expected output values can reduce the testing effort as
compared to a test case generator, where the expected
output values must be determined manually. The other
tools of the environment check that the specification is
well-formed with respect to the model, and the
specification-based coverage analyzer ensures that
every unique requirement specification has at least one
corresponding test vector.

1.1 Overview

This paper describes the results of an effort to
integrate the SCR formal methods approach with the
T-VEC automatic test vector generator and
specification analysis system. An example SCR
specification taken from Heitmeyer et al. [HLK95;
HJL96] was translated into the T-VEC specification
language. Test vectors were generated and analyzed for
several different variations of the translated
specification. Although the models are very similar,
the analysis of the resulting test vectors helped identify
two general guidelines for the translation process:

• Variables referenced in an SCR event operator
must be expanded into two states when
translated into the T-VEC model to adequately
represent the state before and after the event.
T-VEC must generate input values for each
variable at both states for all specified mode
combinations of the SCR variables.

• The structure of the T-VEC specification must
map to the ideal functions of an SCR
specification so that only those constraints
directly associated with an ideal function are
relevant to the test vector generation and
coverage analysis process.

These guidelines are fundamental for generating
tests from specifications that use event operators to
ensure that the reactive aspects of the system are
implemented in the target system. The specification
structuring is important for the translation process as
well as the resulting design in order to associate the
generated tests with requirements that must be mapped
to the decisions in an implementation.

1.2 Organization of paper

Section 2 provides an overview of the SCR model
and an example specification. Section 3 describes the
T-VEC model and its relationship to the SCR model
and language constructs. Section 4 provides an

overview of the T-VEC test vector generation
mechanisms, a description of the test vectors, and their
relationship to the example specification. Section 5
summarizes the analysis results and the requirements
for an SCR-to-T-VEC translator.

2. SCR model and example
specification

This section presents an overview of the SCR
specification constructs to support the T-VEC mapping
discussion that is provided in Section 3. A more
complete formal description of the SCR model can be
found in [HJL96].

The Four Variable Model [PM91; Sch90] shown in
Figure 1 provides a conceptual basis for describing the
artifacts that are represented in an SCR specification.

REQ and NAT

Environment

System

Input
Devices

Output
Devices

Software

Input
Data
Items

Output
Data
Items

Monitored
Variables

Environment

Controlled
Variables

IN OUTSOFT

Figure 1. Four variable model

Monitored and controlled variables represent
environmental quantities. REQ and NAT relations
specify the required system behavior in terms of
monitored and controlled variables. NAT defines the
set of possible values; it captures any constraints on
behavior imposed by physical laws. REQ defines the
additional constraints imposed by the system to be
built. Monitored variables must be mapped through
input devices where they are represented as input data
items; the IN relation specifies this mapping.
Controlled variables are mapped as characterized by
the OUT relation from output data items. The SCR
model can describe system requirements or software
requirements. As described in [HJL96], the term input
variable is used to represent a monitored variable or
input data item, and an output variable is used to a
represent a controlled variable or output data item.

There are four other constructs that are used in the
specification; these are modes, terms, conditions, and
events. A mode class is a state machine, where related
system states are called system modes and the
transitions of the state machine are characterized by
events. A term is any function in input variables,
modes, or other terms. A condition is a predicate
characterizing a system state. An event occurs when
any system entity changes value.

2.1 Safety injection system example

The following is an example system that is
presented in [HLK95; HJL96]. The specification is for
a Safety Injection control system. The system uses three
sensors to monitor water pressure and adds coolant to
the reactor core when the pressure falls below some
threshold. The system operator blocks Safety Injection
by turning on a Block switch and resets the system after
blockage by turning on a Reset switch. Water pressure
and the Block and Reset switches are represented as
input variables; Safety Injection is an output variable.
The specifications of type and constant definitions are
shown in Tables 1 and 2. The input and output variable
specifications are shown in Tables 3 and 4.

Table 1. Type dictionary
Name Base Type Units Legal Values Comment

Pressure Integer psi [0,2000]
Switch Enumerated N/A ON, OFF

Table 2. Constant dictionary
Name Type Value Comment

Low Pressure 900
Permit Pressure 1000

Table 3. Input variable dictionary

Name Type Initial Value Accuracy
Physical

Interpretation
Block Switch OFF N/A
Reset Switch ON N/A
WaterPres Pressure 14 0.05%

Table 4. Output variable declaration

Name Type
Initial
Value Accuracy

Physical
Interpretation

Safety_Injection Switch OFF N/A

Table 5 defines a mode class representing pressure
states. The mode class M_Pressure is an abstract model
of the input variable WaterPres. At any given time, the
system must be in one of three modes: TooLow,
Permitted, or High.

Table 5. Mode class dictionary
Name Modes Initial Mode Comment

M_Pressure TooLow, Permitted, High TooLow

Table 6 defines a term Overridden. The term
Overridden is true if Safety Injection is blocked, false
otherwise.

Table 6. Term dictionary
Name Type Initial Value Accuracy Comment

Overridden Boolean TRUE N/A

The M_Pressure mode transition function, shown in
Table 7, specifies the events that transition the system
into the three different modes. For example, at the time
when WaterPres becomes greater than or equal to Low
(i.e., 900) then M_Pressure transitions from the state
TooLow to Permitted.

Table 7. Mode transition function for M_Pressure
Source Mode Events Destination Mode

TooLow @T(WaterPres >= Low) Permitted
Permitted @T(WaterPres < Low) TooLow
Permitted @T(WaterPres >= Permit) High
High @T(WaterPres < Permit) Permitted

Tables 8 and 9 specify the overall behavior of the
system in terms of modes, events, and terms. An
example interpretation of Table 9 is: when the Mode is
TooLow and Overridden is TRUE, then the value of
Safety Injection is OFF. Table 8 specifies the function
for the term Overridden; Overridden becomes TRUE
when the mode is either TooLow or Permitted at the
time point when Block becomes ON when Reset is
OFF.

Table 8. Ideal value function for Overridden
Name

Overridden

Mode Events

High Never @T(Inmode)

TooLow, Permitted @T(Block=ON) WHEN Reset = OFF @T(Inmode) OR @T(Reset = ON)

Overridden= TRUE FALSE

M_Pressure
Mode Class

Table 9. Ideal value function for Safety Injection
Name

Safety_Injection

Mode Events

High, Permitted TRUE FALSE

TooLow Overridden Not Overridden

Safety_Injection= OFF ON

Mode Class

M_Pressure

3. T-VEC model and SCR mapping

This section focuses on T-VEC’s specification
models and how SCR specifications can be mapped
into the T-VEC specification language. This focus
helps describe the fundamental specification concepts
that are relevant to test vector generation.

3.1 T-VEC models

T-VEC specifications are based on two models: a
structural model and a requirement specification
model. The structural model is a means for managing

complexity using hierarchical relationships and for
packaging common specification elements for reuse.
The requirement specification model provides the
basis for identifying and organizing the functional
requirements for a subsystem. The formal definition of
a functional requirement is the basis for the requirement
specification model [Bus88; BB86]:

the set of all functional relationships, for all
points of temporal relevance, for a given
output object

Given a set of boundaries for a software system, the
requirements are defined in terms of the syntactic
structure and semantic values associated with the given
input/output space. Figure 2 relates the functional
requirements model to the precondition and
postcondition model of Hoare [Hoa69]. A
T-VEC subsystem is defined by: outputs, inputs,
functional relationships, and relevance predicates. A
functional relationship characterizes an object of the
output space as a function of the inputs with respect to
a relevance predicate. A relevance predicate groups all
the precondition constraints associated with each
functional relationship. Relevance predicates
characterize data and temporal constraints on the
objects of the input space.

A software system specification is captured in a set
of related subsystems called a project. The elements of
a subsystem are defined as follows:

• SS is a subsystem that contains the following
sets: {I, O, FR, RP, LS}

• I is the set of elements Ij of the input space, for
all i,j Ii,j ⊂ Ii ⊂ I, where any Ii,j is a
subcomponent of Ii, and I is the Cartesian
product of the set of all inputs.

• Similarly O is the set of elements Oj of the
output space, where for all i,j Oi,j ⊂ Oi ⊂ O.

• FR is a set of functional relationships where FRi

defines the mapping Oj = FRi (Ik) with respect to
a constraint called the relevance predicate
RPi(Im), where Im ⊂ Ik and Oj ⊂ O.

Functional relationship expressions are specified in
terms of primitive operators: bit operations,
assignment, addition, subtraction, multiplication,
division, exponentiation, absolute value, log, and
trigonometric functions. Subsystems can be treated like
functions, even if the subsystem specifies the
requirements for complex objects; therefore,
subsystems can be referenced within a functional

relationship or in a relevance predicate. A functional
relationship can also be expressed in terms of a forall
operator when specifying a relationship governing
some or all elements of a specified range of array
elements.

• LS is a set of parameterized Boolean-valued
statements that define constraints used in a
relevance predicate. A logic structure defines
constraints on the parameters in terms of
connected conditions or logic structures using ∧,
∨, and ¬. A condition is a statement r ϕ s where
ϕ ∈{=, ≠, >, <, ≥, ≤}; r ∈ I; and s is a variable,
constant, arithmetic expression or functional
relationship of another subsystem in the project.

• RP is a set of disjunctions of Boolean-valued
statements. RPi is of the form p1 ∧ p2 ∧ … ∧ pm,
pi is a Boolean-valued statement r ϕ v where ϕ
∈{=, ≠, >, <, ≥, ≤}; r ∈ I; if pi is a logic structure
it can be referenced in the positive sense as pi or
negated as NOT:pi .

Output
Space

Characterizes
constraints
on input space

Precondition Postcondition

Input
Space Program

Relevance
Predicate
(set of disjunctions
of conjunctions)

Functional
Relationship

Disjunction of
Conjunction of
Predicates

Defines when functional
relationship is relevant

Predicate Node

T-VEC Requirement Specification Model

Defines functional
relationship between

inputs and output

Figure 2. Relationship between T-VEC requirement
specification model and precondition/postcondition
model

The structural model defines the relationship
between subsystems of a project. Subsystems can be
related hierarchically such that SSi,j inherits I, O, and
LS from SSi. Any SSi can reference input (I) and output
(O) definitions. A subsystem can also reference
functional relationships or logic structures from
subsystems in the project by passing the input and
output state space as a parameter.

Figure 3 shows an annotated T-VEC linear form2

specification for the first version of the Safety Injection
system. The labels on the left side of the figure are used
later in the paper to explain the specification constructs.
The system is specified with a project in one subsystem
that contains the mode transition function for
M_Pressure and the ideal functions for Overridden and
Safety Injection. Version 2 of the example, shown in
Figures 6 and 7, is specified in one project containing
two subsystems where Overridden is specified in a
“lower-level” subsystem that is referenced by the
Safety Injection subsystem.

3.2 Specification mapping goal

The SCR model is based on a finite state
automaton, and T-VEC is a logic specification. The
SCR model defines a system state in terms of entities, a
condition as a predicate on the system state, and an
input event as a change in an input variable [HJL96].
Modes represent event transitions over time. As shown
in Figure 2, a T-VEC specification is defined in terms
of the old state, characterized by the precondition, and
the new state that is characterized by the postcondition.
The relevance predicate specifies the constraints on
input variables in the old state, and the functional
relationship specifies the expected output for the new
state. This directly supports the concept of an SCR
condition.

A functional relationship that is related to an SCR
event can depend on both the old state and new state of
the specification entities, as described in [HJL96]. This
means that a translation must create two instances of
each input variable, term or mode, one for the old state
and another for the new state. The relevance predicate
characterizes the constraints associated with the old and
new state; this means the relevance predicate is
equivalent to the next-state relation for a state transition
system. In the T-VEC specification, variables have a 1
or 2 suffix added to their name to indicate the
association with the old state or new state. Variable
definitions examples are shown in Figure 3.

The goal of the translation process is to map every
SCR functional expression of an output variable to a
T-VEC functional relationship of an output variable
with respect to a set of predicates on the input
variables. These predicates correspond to conditions,
events, and corresponding mode transitions. Events
must be reduced to predicates of input variables or

2 The T-VEC linear form language specification can be found on the
web at address http://www.crosslink.net/~blackbur/tvec_lrm.htm.

terms for the old state and new state (i.e., the one
before the event and the one after the event).

3.3 Specification construct mappings

Tables 10, 11, and 12 summarize the mapping
between the elements of the SCR and T-VEC models in
terms of their specification constructs. Table 10 shows
that T-VEC inputs map to SCR input variables, and the
outputs map to SCR output variables. SCR terms can
be input or output variables, and mode classes are
inputs. Both T-VEC and SCR support constant and
type definitions. Both methods allow data to be
specified in terms of base and derived types. Table 11
shows the type definition mappings; in T-VEC,
numeric subranges or enumeration constants are
described in constraints, and the analogous concepts
are characterized as legal values in the SCR method.
Both methods support accuracy and representation.
Initial values can be specified in the SCR. As a logic
specification, T-VEC does not explicitly represent
state; any specific data value must be specified in terms
of a predicate on the input variables as it relates to a
functional relationship.

Table 10. Variable definition mapping
Object Definitions

T-VEC Inputs Variable Output Variable Constant Type

SCR
Input Variable, Terms,
Mode Class

Output Variable,
Terms Constant Type

Table 11. Type definition mapping
Type Definitions

T-VEC
Base or
Derived Types Constraint Accuracy

Data
Representation <none>

SCR
Base or
Derived Types

Legal
Values Accuracy

Physical
Interpretation Initial Value

Table 12 summarizes behavioral specification
mappings. T-VEC functional requirements map to SCR
ideal functions. T-VEC functional relationships map to
SCR functional expressions. Relevance predicates map
to modes, events, and conditions. SCR modes are
defined in mode transition functions. SCR condition
tables are not shown in the example specification.3

Table 12. Behavioral specification mapping
Behavioral Specifications

T-VEC
Functional
Req’s.

Functional
Relationships Relevance Predicate

SCR
Ideal
Function

Functional
Expression Modes Events Conditions

3 An SCR condition maps directly into a T-VEC relevance predicate
because it characterizes constraints on the input space at a time point
prior to the execution of a function. In T-VEC, conditions are
represented as logic structures or simple predicates.

Figure 3. Safety injection example version 1 in T-VEC linear form

 SUBSYSTEM safety_injection1 (WaterPres1, WaterPres2, Reset1, Reset2, Block1, Block2, Overridden1, Overridden2, Pressure1, Pressure2)
 {

 TYPE Switch ISA ENUMERATION RANGE {OFF=0, ON=1};
 TYPE Pressure ISA INTEGER RANGE {0..2000};
 TYPE M_Pressure_Mode ISA ENUMERATION RANGE {TooLow=0, Permitted=1, High=2};
 CONSTANT Low ISA Pressure VALUE 900;
 CONSTANT Permit ISA Pressure VALUE 1000;
 VARIABLE Safety_Injection ISA Switch;
 VARIABLE WaterPres1 ISA Pressure;
 VARIABLE WaterPres2 ISA Pressure;
 VARIABLE Reset1 ISA Switch;
 VARIABLE Reset2 ISA Switch;
 VARIABLE Block1 ISA Switch;
 VARIABLE Block2 ISA Switch;
 VARIABLE Overridden1 ISA BOOLEAN;
 VARIABLE Overridden2 ISA BOOLEAN;
 VARIABLE Pressure1 ISA M_Pressure_Mode;
 VARIABLE Pressure2 ISA M_Pressure_Mode;

LS1 LOGIC STRUCTURE At_T_Reset_TooLow (Pressure1:M_Pressure_Mode, Reset1:Switch, Reset2:Switch)
 CONSTRAINT(Pressure1 = TooLow and Reset1 = OFF and Reset2 = ON);

LS2 LOGIC STRUCTURE At_T_Reset_Permitted (Pressure1:M_Pressure_Mode, Reset1:Switch, Reset2:Switch)
 CONSTRAINT(Pressure1 = Permitted and Reset1 = OFF and Reset2 = ON);

LS3 LOGIC STRUCTURE At_T_Inmode_High (Pressure1:M_Pressure_Mode, Pressure2:M_Pressure_Mode)
 CONSTRAINT (Pressure2 = High and Pressure1 != High);

LS4 LOGIC STRUCTURE At_T_Inmode_TooLow_Permitted (Pressure1:M_Pressure_Mode, Pressure2:M_Pressure_Mode)
 CONSTRAINT ((Pressure2 = Permitted or Pressure2 = TooLow) and

 (Pressure1 != Permitted and Pressure1 != TooLow));

LS5 LOGIC STRUCTURE At_T_Block_On (Reset1:Switch, Reset2:Switch, Block1:Switch, Block2:Switch)
 CONSTRAINT (Block2 = ON and Block1 = OFF and Reset1 = OFF and Reset2 = OFF);

LS6 LOGIC STRUCTURE Overridden_Term (Overridden2, Pressure1, Pressure2, Reset1, Reset2, Block1, Block2)
 CONSTRAINT
LS6.1 Overridden2 = false and
LS6.1.1 (At_T_Reset_TooLow(Pressure1, Reset1, Reset2)
LS6.1.2 OR At_T_Reset_Permitted(Pressure1, Reset1, Reset2)
LS6.1.3 OR At_T_Inmode_High(Pressure1, Pressure2)
LS6.1.4 OR At_T_Inmode_TooLow_Permitted(Pressure1, Pressure2))
LS6.2 OR Overridden2 = true and
LS6.2.1 (Pressure1 = TooLow and At_T_Block_On(Reset1, Reset2, Block1, Block2)
LS6.2.2 OR (Pressure1 = Permitted and At_T_Block_On(Reset1, Reset2, Block1, Block2)));

LS7 LOGIC STRUCTURE M_Pressure (WaterPres1, WaterPres2, Pressure2, Pressure1)
 CONSTRAINT
LS7.1 Pressure2 = TooLow and Pressure1 = Permitted
 and WaterPres2 < Low and WaterPres1 >= Low and WaterPres1 < Permit
LS7.2 OR Pressure2 = High and Pressure1 = Permitted
 and WaterPres2 >= Permit and WaterPres1 < Permit and WaterPres1 >= Low
LS7.3 OR Pressure2 = Permitted and (Pressure1 = TooLow and WaterPres2 >= Low and WaterPres2 < Permit and WaterPres1 < Low
 OR Pressure1 = High and WaterPres2 < Permit and WaterPres2 >= Low and WaterPres1 >= Permit)
LS7.4 OR Pressure2 = Pressure1 and ((Pressure1 = TooLow and WaterPres2 < Low and WaterPres1 < Low)
 OR (Pressure1 = Permitted and WaterPres2 < Permit and WaterPres1 < Permit
 and WaterPres2 >= Low and WaterPres1 >= Low)
 OR (Pressure1 = High and WaterPres2 >= Permit and WaterPres1 >= Permit));
 FUNCTIONAL REQUIREMENTS
 LEVEL {
FR.0 RELATIONSHIP produce Safety_Injection;
 RELEVANCE PREDICATE {
RP.0 DISJUNCTION {M_Pressure};
 }
 LEVEL {
FR.1 RELATIONSHIP Safety_Injection = ON;
 RELEVANCE PREDICATE {
RP.1.1 DISJUNCTION {Pressure2 = TooLow, Overridden2 = false, Overridden_Term};
RP.1.2 DISJUNCTION {Pressure2 = TooLow, Overridden2 = false, Overridden1 = false, NOT:At_T_Reset_TooLow, NOT:At_T_Reset_Permitted,
 NOT:At_T_Inmode_High, NOT:At_T_Inmode_TooLow_Permitted, NOT:At_T_Block_On};
 }
FR.2 RELATIONSHIP Safety_Injection = OFF;
 RELEVANCE PREDICATE {
RP.2.1 DISJUNCTION {Pressure2 = High};
RP.2.2 DISJUNCTION {Pressure2 = Permitted};
RP.2.3 DISJUNCTION {Pressure2 = TooLow, Overridden2 = true, Overridden_Term};
RP.2.4 DISJUNCTION {Pressure2 = TooLow, Overridden2 = true, Overridden1 = true, NOT:At_T_Reset_TooLow, NOT:At_T_Reset_Permitted,
 NOT:At_T_Inmode_High, NOT:At_T_Inmode_TooLow_Permitted, NOT:At_T_Block_On};
 } } } }

3.4 Mapping mode transition functions

An SCR mode transition function defines a mapping
from one mode to another based on the occurrence of
an event. In T-VEC, the mode transition function is
mapped into a logic structure. See LS7 in Figure 3. The
source mode, Pressure1 is defined as part of a
relevance predicate old state, and the event specifies
the condition for the transition to the destination mode
Pressure2. This translation is based on the
specification given in standard logic in [HJL96], with
some minor exceptions. In [HJL96], there is an
assumption that limits the rate of change of the input
variable WaterPres. This assumption precludes the
transitions from TooLow to High and from High to
TooLow. The constraints associated with this
assumption have been formalized in LS7. The
transition from LS7.1 specifies the transition from
Permitted to TooLow; LS7.2 specifies the transition
from Permitted to High; LS7.3 specifies both
transitions as disjunctions, one from TooLow to
Permitted and the other from High to Permitted. LS7.4
specifies the case where there is no transition.

3.5 Mapping ideal functions of terms

Overridden is an ideal function for a term variable.
The term Overridden is used in the Safety Injection
ideal function as shown in Figure 4. In SCR, an ideal
function for a term variable modularizes a
specification. The term variable is not an output of the
system, but it is used in the constraint of the Safety
Injection ideal function. Overridden can be mapped to
the T-VEC model in two ways: as a set of predicates
represented in a logic structure or as a lower-level
subsystem that has a Boolean output associated with the
value of the function. For version 1, the function
Overridden is translated as a logic structure that is
referenced within the Safety Injection relevance
predicate. Figure 3 shows the representation of the
Overridden ideal function as a logic structure LS6. The
two disjunctions, LS6.1 and LS6.2, map to the two
outputs of the ideal function Overridden. The nested
disjunctions, LS6.1.1 through LS6.1.4, are required
when Overridden2 is false, and disjunctions LS6.2.1
and LS6.2.2 are required when Overridden2 is true.
These specifications also illustrate the use of
parameterized logic structures, which are reused in the
negated sense to characterize the states when
Overridden2 does not change state. This situation is
discussed in the next section.

One case is not reflected in the translation; Table 8
specifies that when the mode is High there is no event
that should set Overridden to true. From a test vector

generation perspective, there is no way to produce a
test vector with externally visible results for this case.
The verification of this requirement requires manual
analysis of the target implementation.

Name Mode Class

Safety_Injection M_Pressure

Mode Events

High, Permitted TRUE FALSE

TooLow Overridden Not Overridden

Safety_Injection= OFF ON

T-VEC
Requirement
Specification
Model

SCR Ideal
Function

Relevance
Predicate

(set of disjunctions
of conjunctions)

Functional
Relationship

Conjunction of
Predicates

Defines when functional
relationship is relevant

Predicate Node

Figure 4. Mapping between T-VEC requirement
specification and SCR ideal function

3.6 Functional relationships

Figure 4 shows the correspondence between a
T-VEC functional relationship and an SCR functional
expression. The functional requirement output is Safety
Injection, and it is based on the mode class
M_Pressure. The functional relationship FR.0 is
associated with one disjunction for the relevance
predicate RP.0, which states that M_Pressure is always
relevant to any functional relationship for Safety
Injection. Figure 3 shows how the specification
characterizes the functional relationship for each
functional expression of the SCR specification (one
when Safety Injection is ON and the other when it is
OFF); they are labeled FR.1 and FR.2. The functional
relationship FR.1 has one disjunction RP1.1. The
conditions of this disjunction are consistent with the
ideal function for Safety Injection shown in Table 9; it
specifies that Pressure2 = TooLow and Overridden2
= false in the context of the logic structure
Overridden_Term (i.e., the logic structure
representation of Overridden). In addition, any
disjunction must also satisfy the disjunctions of RP.0,
which characterizes the constraints of M_Pressure.
Similarly the relevance predicate for FR.2 has three
disjunctions, RP.2.1, RP.2.2, RP.2.3, that correspond
to the cases when Safety Injection is OFF.

The relevance predicates RP.1.2 and RP.2.1 have
been separated to clearly identify the treatment of the
case where Overridden does not change state. These
are the cases when both Overridden2 =

Overridden1 and all of the constraints associated
with the events specified in Overridden_Term do not

occur. This is reflected by the conjunction of the
negated logic structure:

NOT:At_T_Reset_TooLow and
NOT:At_T_Reset_Permitted and
NOT:At_T_Inmode_High and
NOT:At_T_Inmode_TooLow_Permitted and
NOT:At_T_Block_On

4. Resulting test vectors

This section describes the test vectors that were
generated for two different versions of the
specification:

1. Overridden specified as a constraint within the
Safety Injection subsystem (version 1)

2. Overridden specified as a lower-level subsystem
(version 2 – described later in this section)

First, the linear form transformation and test vector
generation concepts are described.

4.1 Specification compilation

A specification compiler transforms the linear form
shown in Figure 3 into a logic specification represented
in a Prolog-like language. During the process, syntax
and semantic checks are performed to ensure that the
resulting specification complies with the T-VEC
models. The disjunctions in logic structures are
expanded and a DeMorganization process is applied to
logic structures preceded by the NOT: operator. When
the compiled specification is loaded into the test vector
generator, each functional relationship is associated
with a set of disjunctions of conjunctions characterized
by the “flattened” and DeMorganized logic structures
within a subsystem. Each disjunction is referred to as a
domain convergence path (DCP).

4.2 Test vector generation concepts and
mechanisms

T-VEC is an oracle/error-based testing mechanism
based on Richardson’s et. al [ROT89] classification of
specification-based testing approaches; such
approaches extend implementation-based testing
techniques to formal specifications. The T-VEC test
selection mechanisms are related to implementation-
based testing concepts and strategies.

Using Zeil’s [Zei89] modified version of Howden’s
[How76] definitions: a computation error occurs when
the correct path through the program is taken, but the
output is incorrect due to faults in the computation
along the path. A domain error occurs when an
incorrect output is generated due to executing the

wrong path through a program. Based on the
assumption that there is a strong correlation between
predicates in the specification and path control
conditions in the program, the test selection strategies
are discussed in terms of domain testing theory
concepts. White and Cohen [WC80] proposed domain
testing theory as a strategy for selecting test points to
reveal domain errors. It is based on the premise that if
there is no coincidental correctness, then test cases that
localize the boundaries of domains with arbitrarily high
precision are sufficient to test all the points in the
domain.

T-VEC selects test data for subdomains of an input
space based on the constraints of a DCP. The DCP
predicates should map to the path conditions in a
corresponding program.

A subdomain convergence algorithm is used to
determine a DCP subdomain. If a nonempty subdomain
exists for a DCP, then the input values associated with
a test point are selected for the borders of the
subdomain. A border is defined by evaluating the
predicates of a DCP for a set of input values. For
example, test points for numeric objects are selected
for both upper and lower domain boundary values. This
results in test points for subdomain borders based on all
low-bound values and high-bound input values that
satisfy the DCP predicate evaluation. Some inputs to
the functional relationship are not constrained by the
DCP predicates. For each test point derived from DCP
predicates, there are additional test points derived for
unconstrained inputs not referenced in the DCP based
on all domain boundary value combinations (e.g., low
bound and high bound for numeric objects, sets for
enumerated variable). By selecting the extreme value
combinations, it is possible to detect computation
errors in the output calculation. This test selection
strategy is used to detect computation errors or show
that unconstrained inputs do not affect the output for a
program path.

The functional relationship is applied to each input
value set to determine the expected output value. The
value is checked against the subrange specification of
the output variable; if the value is within the specified
range, a test vector is produced that includes the inputs,
input types and representation information, the
expected output with its type information, and the
DCP.

4.3 Resulting test vectors

The version 1 specification resulted in 178 test
vectors that were generated in single vector mode (see
Section 4.4). There were 18 test vectors generated for

RP.1.1, RP.2.1, RP.2.2, and RP.2.3 that correspond to
the cases when Overridden changes; these vectors are
shown in Table 13. The remaining 160 test vectors
were associated with relevance predicates RP.1.2 and
RP.2.4, which specify the states where there is no
change in Overridden. These specifications are
important for testing to ensure that the system stays in
the specified mode when the inputs do not change.
These tests are not shown due to space limitations.

Each row corresponds to one test vector. There are
columns that identify the test vector number, the
functional relationship (FR), the primary constraint of
the relevance predicate (i.e., the prefix of the DCP), the
convergence mode (e.g., low bound or high bound for
numeric variables), and the values for the expected
output (i.e., Safety Injection) and each input.

4.4 Vector generation modes

There are selectable modes for generating test
vectors: multi, restricted, and single vector modes. The
test point selection also depends on the relevance
predicate constraints for each functional relationship.
Table 14 shows the relationships between the resulting
test points in each mode, with respect to a constraint.
Given two variables x and y, each with a subrange of
–10 to 10, and a functional relationship z = x + y;

assume there are two relevance predicate constraints:
1) x > y, and 2) TRUE (i.e., there are no constraints
on the variables x and y other than their subranges). For
constraint 1, test points are selected based on the
subdomain constraints for high bound and low bound
combinations. Based on the assumption stated in
Section 4.2 (i.e., the DCP predicates should map to the

path conditions in a corresponding program), this
heuristic has been effective in producing a minimal
number of test cases to exercise each decision in a
program with both high bound and low bound cases.
For unconstrained variables, the following rules apply
(i.e., the row labeled TRUE in Table 14):

• Multi: All combinations of the inputs based on
the variable’s range are selected as test points
(this is effective in detecting computation
errors).

• Restricted: Each high bound and low bound of
each variable as well as the high bound
combination (as the number of inputs increases
this number will result in significantly less tests
than multi-vector mode).

• Single vector mode: Only the high bound test
points will be selected (this is effective in
detecting computation errors, like overflows).

Table 14. Vector generation mode example

Constraint x y x y x y

-9 -10 -9 -10 -9 -10
10 9 10 9 10 9

10 10 10 10 10 10
10 -10 10 -10
-10 10 -10 10
-10 -10

1) x > y

2) TRUE

Multi Restricted Single

Table 13. Test vector summary for version 1 – Safety Injection

Vector # FR RP
Convergence

Mode
Safety

Injection Overridden2 Pressure1 Pressure2 WaterPres1 WaterPres2 Reset1 Reset2 Block1 Block2

1 1 RP__1<<1>> Low Bound ON FALSE TooLow TooLow 0 0 OFF ON - -
2 1 RP__1<<2>> Low Bound ON FALSE Permitted TooLow 900 0 OFF ON - -
3 1 RP__1<<1>> Hi Bound ON FALSE TooLow TooLow 899 899 OFF ON - -
4 1 RP__1<<2>> Hi Bound ON FALSE Permitted TooLow 999 899 OFF ON - -
5 2 RP__2<<1>> Low Bound OFF FALSE Permitted High 900 1000 OFF OFF OFF OFF
6 2 RP__2<<1>> Low Bound OFF FALSE High High 1000 1000 OFF OFF OFF OFF
7 2 RP__2<<2>> Low Bound OFF FALSE TooLow Permitted 0 900 OFF OFF OFF OFF
8 2 RP__2<<2>> Low Bound OFF FALSE High Permitted 1000 900 OFF OFF OFF OFF
9 2 RP__2<<2>> Low Bound OFF FALSE Permitted Permitted 900 900 OFF OFF OFF OFF

10 2 RP__2<<3>> Low Bound OFF TRUE TooLow TooLow 0 0 OFF OFF OFF ON
11 2 RP__2<<4>> Low Bound OFF TRUE Permitted TooLow 900 0 OFF OFF OFF ON
12 2 RP__2<<1>> Hi Bound OFF FALSE Permitted High 999 2000 OFF OFF OFF OFF
13 2 RP__2<<1>> Hi Bound OFF FALSE High High 2000 2000 OFF OFF OFF OFF
14 2 RP__2<<2>> Hi Bound OFF FALSE TooLow Permitted 899 999 OFF OFF OFF OFF
15 2 RP__2<<2>> Hi Bound OFF FALSE High Permitted 2000 999 OFF OFF OFF OFF
16 2 RP__2<<2>> Hi Bound OFF FALSE Permitted Permitted 999 999 OFF OFF OFF OFF
17 2 RP__2<<3>> Hi Bound OFF TRUE TooLow TooLow 899 899 OFF OFF OFF ON
18 2 RP__2<<4>> Hi Bound OFF TRUE Permitted TooLow 999 899 OFF OFF OFF ON

The internal form of a test vector is shown in Figure
5. The first line indicates the functional relationship
and relevance predicate. The <<1>> indicates that this
is the first Safety Injection functional relationship; each
predicate disjunction is identified by a unique number
using this notation. The OUTPUT section includes one
object, Safety Injection. Each output also includes the
associated type, data representation (e.g., 32 bits)
physical value (1), and enumeration constant (ON).
This is followed by the INPUTS section that lists all the
input objects. Each input object has the same
information as the output object. Finally, the relevance
predicate disjunction (i.e., DCP) that was used in the
vector generation process is delineated by the
START_JUSTIFICATION and END_JUSTIFICATION
keywords. The justification path is part of the input to
the coverage analysis process.

4.5 Specification-based coverage analysis

After test vectors are generated, a check is
performed to ensure that each specification
corresponding to a DCP has at least one test vector.
The T-VEC specification-based coverage analysis tool
identifies specification inconsistencies that occur when
there is not a complete mapping between the generated
test vectors and the set of all DCP combinations in the
compiled specification for a subsystem. Specification
inconsistencies can result when:

• The convergence process cannot determine an
input subdomain for a DCP because there is an
inconsistent set of predicates in the DCP.

• The expected output value, computed using the
functional relationship with the input test values,
is not correct with respect to its subrange
specification.

The coverage analyzer was used to check the
resulting test vectors against the compiled specification.

The coverage analysis results helped identify some
translation guidelines that were not applied to the
version 1 translation. By combining ideal functions into
one subsystem, there are system states for the ideal
function Safety Injection that cannot be satisfied by all
combinations of cases when Overridden = false. For
the Safety Injection requirement when Pressure2 =
TooLow and Overridden = false, there were two DCPs
that were flagged by the coverage analyzer, when
Pressure2 is required to be High or Permitted in the
ideal function Overridden. The first case involves
statements RP.1.1 (Safety Injection), RP.0
(M_Pressure), LS6.1.3 (Overridden) shown in Figure
3. The expanded conditions are:

Pressure2 = TooLow, Overridden2 = False,
Pressure2 = High and Pressure1 != High

In this case, Pressure2 cannot be TooLow and
High. The TooLow condition comes from the Safety
Injection ideal function, and the Pressure2 = High is
specified in the Overridden ideal function
@Inmode(High). The second set of conditions is
related to the statements RP.1.1, RP.0, and LS6.1.4.
The expanded conditions are:

Pressure2 = TooLow and Overridden2 = False and
Pressure1 != Permitted and Pressure1 != TooLow
and Pressure2 = Permitted

In this case, Pressure2 cannot be TooLow and
Permitted. Similarly, the TooLow condition comes
from the Safety Injection ideal function, and the
Pressure2 = Permitted is specified in Overridden.

4.6 Version 2: Hierarchy of specifications

Guidelines to localize the constraints of an ideal
function to a subsystem were applied to the second
translation; this affects the way tests are generated and
coverage analysis is performed. The specification was
translated into a hierarchy of two subsystems: one for
Safety Injection and one for Overridden. The structure
of the T-VEC subsystems maps to the relationship of
the ideal functions of an SCR specification.

The translated specifications are shown in Figures 6
and 7. Figure 6 is almost identical to Figure 3; the type,
variable, constant sections have been removed, as well
as the M_Pressure logic structure, as annotated in the
figure. The key difference is the logic structure labeled
LS_2.1. The Overridden_Term logic structure
references a subsystem named Overridden, instead of
expanding the ideal function in the logic structure.
Overridden inherits data, type, and logic structure
information from Safety Injection, as annotated in
Figure 6.

safety_injection1<<1>>, RP__1<<1>>
OUTPUT
Safety_Injection ENUMERATION 32 1 ON
INPUTS
WaterPres1 INTEGER 32 0
WaterPres2 INTEGER 32 0
Reset1 ENUMERATION 32 0 OFF
Reset2 ENUMERATION 32 1 ON
Overridden2 BOOLEAN 32 0 FALSE
Pressure1 ENUMERATION 32 0 TooLow
Pressure2 ENUMERATION 32 0 TooLow
START_JUSTIFICATION
solution number -> 1
safety_injection1, safety_injection1_FR__1,
enter_cv_mode<<2>>, cv_safety_injection1_RP__1,
safety_injection1_RP__1, safety_injection1_RP__0,
M_Pressure<<4>>, M_Pressure.1, At_T_Reset_TooLow,
exit_cv_mode
END_JUSTIFICATION

Figure 5. T-VEC internal form of test vector

In Figure 7, functional relationship FR_2.0 is
associated with the Overridden2 variable for the ideal
function Overridden. The relevance predicate RP_2.0 is
related to the M_Pressure mode class as it was in
version 1. FR_2.1 maps to the TRUE output of the
function, with respect to constraints RP_2.1.1 and
RP_2.1.2. Similarly, FR_2.2 maps to the FALSE output
of Overridden with respect to constraints RP_2.2.1
through RP_2.2.4. These conditions map directly to the
events in Table 8. Finally, RP_2.1.3 and RP_2.2.5 are
associated with the situation when Overridden does not
change state, using the negation of state change events
defined in the logic structures.

4.7 Version 2: Hierarchical test vector
generation and coverage analysis

A unique mechanism of T-VEC supports the
generation of test vectors for a hierarchy of
specifications, without regenerating all test vectors for
each referenced lower-level subsystem. When any
function, like Safety Injection, references another
function, like Overridden, the test vector generator
treats Overridden like a primitive operator. This
mechanism precludes the combinatorial explosion
associated with tests generated from the combination of
constraints in a hierarchy of subsystems.

The T-VEC coverage analyzer tool distinguishes
between the specifications in the parent subsystem and
any child subsystem that is used to support the
functionality of a parent. In the case of Safety Injection,
the coverage analyzer checked that a function reference

was made to Overridden, rather than checking all the
constraints associated for Overridden.

4.8 Version 2: Resulting test vectors and
coverage analysis

Test vectors were regenerated for both subsystems.
Table 15 shows the test vectors for Safety Injection.
Table 16 shows 24 vectors associated with the FR_2.1
and FR_2.2 relevance predicates with state changes as
specified by the events for the ideal function. There
were 468 total test vectors for Overridden; however,
444 of these vectors were related to the conditions
associated with the state not changing, as specified by
RP_2.1.3 and RP_2.2.5 in Figure 7.

The coverage analysis check was performed for
version 2, and the test vectors for Safety Injection and
Overridden covered all DCP combinations of the
compiled specification. However, a NAT constraint
specified in M_Pressure did cause the coverage
analyzer to flag a constraint in Overridden. M_Pressure
limits the amount that WaterPres can change during
one state transition. The constraint associated with
RP_2.2.4, which references the logic structure labeled
LS_2.1 specifies that Pressure1 != Permitted ∧
Pressure1 != TooLow; this implies that Pressure1 =
High, and Pressure2 = Permitted ∨ Pressure2 =
TooLow. Based on the constraints of M_Pressure, if
Pressure1 = High, the only permitted transition is
Pressure2 = Permitted. This is consistent with the
NAT constraint.

Figure 6. Safety Injection example version 2 in T-VEC linear form

 SUBSYSTEM safety_injection2 (WaterPres1, WaterPres2, Reset1, Reset2, Block1, Block2, Overridden1, Overridden2, Pressure1, Pressure2)
 {
 *** Type, constant, and variable specifications identical to version 1 shown in Figure 3

 LOGIC STRUCTURE Overridden_Term (WaterPres1, WaterPres2, Reset1, Reset2,
 Block1, Block2, Pressure1, Pressure2, Overridden1, Overridden2)
LS_2.1 CONSTRAINT Overridden2 = Overridden(WaterPres1, WaterPres2, Reset1, Reset2,
 Block1, Block2, Pressure1, Pressure2, Overridden1, Overridden2);
 *** M_Pressure logic structure specification identical to version 1 shown in Figure 3
 FUNCTIONAL REQUIREMENTS
 LEVEL {
 RELATIONSHIP produce Safety_Injection;
 RELEVANCE PREDICATE {
 DISJUNCTION {M_Pressure};
 }
 LEVEL {
 RELATIONSHIP Safety_Injection = ON;
 RELEVANCE PREDICATE {
 DISJUNCTION {Pressure2 = TooLow, Overridden2 = false, Overridden_Term};
 }
 RELATIONSHIP Safety_Injection = OFF;
 RELEVANCE PREDICATE {
 DISJUNCTION {Pressure2 = High};
 DISJUNCTION {Pressure2 = Permitted};
 DISJUNCTION {Pressure2 = TooLow, Overridden2 = true, Overridden_Term};
 } } } }

Figure 7. Overridden subsystem specification for version 2 in T-VEC linear form

5. Summary

This paper describes an effort to integrate the SCR
formal methods approach with the T-VEC automatic
test vector generator and specification analysis system.
The results indicate the strong potential for
mechanically translating SCR-style specifications into
the T-VEC specifications to support automatic test
vector generation. Two versions of an example SCR
specification were manually translated into the
T-VEC language. Test vectors were generated for the
two versions using the T-VEC system. The
relationships between the specifications and the
resulting test vectors were analyzed. Two general
guidelines for the translation process were identified:

1. An SCR mode transition function defines a
mapping from one mode to another based on the
occurrence of an event. Variables referenced in
an SCR event operator must be expanded into
two states when translated into the T-VEC
model to adequately represent the states before
and after the event. In T-VEC, the source mode
is defined as a constraint on the input state space
at some time point, and the event at some later
time point leads to the destination mode. For test
vector generation, each possible set of input
variables must be tested to ensure that the

software reacts correctly with respect to its
specification. The translated specification must
characterize the transition case for each mode
event, as well as the case where there is no
transition, to ensure that the system stays in the
specified mode when the inputs do not change.

2. The structure of the T-VEC specification must
map to the ideal functions of an SCR
specification so that only those constraints
directly associated with an ideal function are
relevant to the test vector generation and
coverage analysis process.

The need for mapping ideal functions to T-VEC
subsystems was demonstrated. For version 1 of the
specification, the Safety Injection and Overridden ideal
functions were included in the same T-VEC subsystem;
the analysis identified the need to localize the
constraints of an ideal function to a subsystem; this
affects the way tests are generated and coverage
analysis is performed. In version 2, the ideal functions
were represented as a hierarchy of subsystems, where
Overridden is a child subsystem to Safety Injection.
Test vectors were generated and all valid constraints of
the specifications were fully covered by test vectors.

Therefore, based on the results, every SCR ideal
function must be translated into a T-VEC subsystem;
this will result in a hierarchy of T-VEC subsystems that

 SUBSYSTEM Overridden (WaterPres1, WaterPres2, Reset1, Reset2, Block1, Block2, Pressure1, Pressure2, Overridden1, Overridden2)
 {
 LOGIC STRUCTURE At_T_Reset_TooLow (Pressure1, Reset1, Reset2) CONSTRAINT (Pressure1 = TooLow and Reset1 = OFF and Reset2 = ON);
 LOGIC STRUCTURE At_T_Reset_Permitted (Pressure1, Reset1, Reset2) CONSTRAINT (Pressure1 = Permitted and Reset1 = OFF and Reset2 = ON);
 LOGIC STRUCTURE At_T_Inmode_High (Pressure1, Pressure2) CONSTRAINT (Pressure2 = High and Pressure1 != High);
LS_2.1 LOGIC STRUCTURE At_T_Inmode_TooLow_Permitted (Pressure1, Pressure2)
 CONSTRAINT ((Pressure2 = Permitted or Pressure2 = TooLow)
 and
 (Pressure1 != Permitted and Pressure1 != TooLow));
 LOGIC STRUCTURE At_T_Block_On (Reset1, Reset2, Block1, Block2)
 CONSTRAINT (Block2 = ON and Block1 = OFF and Reset1 = OFF and Reset2 = OFF);

 FUNCTIONAL REQUIREMENTS
 LEVEL {
FR_2.0 RELATIONSHIP produce Overridden2;
 RELEVANCE PREDICATE {
RP_2.0 DISJUNCTION {M_Pressure};
 }
 LEVEL {
FR_2.1 RELATIONSHIP Overridden2 = True;
 RELEVANCE PREDICATE {
RP_2.1.1 DISJUNCTION {Pressure1 = TooLow, At_T_Block_On};
RP_2.1.2 DISJUNCTION {Pressure1 = Permitted, At_T_Block_On};
RP_2.1.3 DISJUNCTION {Overridden1 = true, NOT:At_T_Reset_TooLow, NOT:At_T_Reset_Permitted,
 NOT:At_T_Inmode_High, NOT:At_T_Inmode_TooLow_Permitted, NOT:At_T_Block_On};
 }
FR_2.2 RELATIONSHIP Overridden2 = False;
 RELEVANCE PREDICATE {
RP_2.2.1 DISJUNCTION {At_T_Reset_TooLow};
RP_2.2.2 DISJUNCTION {At_T_Reset_Permitted};
RP_2.2.3 DISJUNCTION {At_T_Inmode_High};
RP_2.2.4 DISJUNCTION {At_T_Inmode_TooLow_Permitted};
RP_2.2.5 DISJUNCTION {Overridden1 = false, NOT:At_T_Reset_TooLow, NOT:At_T_Reset_Permitted,
 NOT:At_T_Inmode_High, NOT:At_T_Inmode_TooLow_Permitted, NOT:At_T_Block_On};
 } } } }

correspond to the logical hierarchy of SCR ideal
functions. When T-VEC generates test vectors for a
hierarchy of specifications it supports integration
testing that covers the relationships between ideal
functions. The tests for each subsystem should be
injected into the target system using a bottom-up testing
strategy. To adequately test the implementation, the
structure of the implementation should correspond with
the specification so that the DCP predicates map to the
path conditions in a corresponding program. If all tests
pass, there is a strong argument that all constraints in
the specifications have a valid implementation in terms
of the decisions guarding the computations that
implement the functional expressions of an ideal
function. This approach was demonstrated for real-
world applications. T-VEC was used in two critical
system developments within an industrial engineering
organization for two systems that have been certified by
the FAA [BB96]. To provide assurance that the
implementation is complete and consistent with respect

to the specification, this type of consistency is typically
required for software developed to support FAA
certifications [RTCA92]. The structural mapping from
the specification to the implementation implies that the
specifier should have some influence on the design of
the resulting implementation if requirements-to-test
traceability is a requirement of the verification process.

The combination of requirement specification
methods and tools with automatic test generation
technologies could significantly reduce the cost of
verification and testing. T-VEC significantly reduced
the verification cost by eliminating most of the manual
testing effort on the last release of the MD90 Electrical
Power System Variable Speed Constant Frequency
system; there was a 6 to 1 reduction in time, effort and
cost on the reverification of the system [BB96]. This
experimental integration demonstrates the utility and
benefits of such an approach and provides strong
arguments for further advancing specification-based
methods and tools.

Table 15. Test vector summary for version 2 – Safety Injection

Vector # FR RP
Convergence

Mode
Safety

Injection Overridden2 Overridden1 Pressure1 Pressure2 WaterPres1 WaterPres2 Reset1 Reset2 Block1 Block2

1 1 RP__1<<1>> Low Bound ON FALSE FALSE Permitted TooLow 900 0 OFF ON OFF OFF
2 1 RP__1<<1>> Low Bound ON FALSE FALSE TooLow TooLow 0 0 OFF ON OFF OFF
3 1 RP__1<<1>> Hi Bound ON FALSE FALSE Permitted TooLow 999 899 OFF ON OFF OFF
4 1 RP__1<<1>> Hi Bound ON FALSE FALSE TooLow TooLow 899 899 OFF ON OFF OFF
5 2 RP__2<<1>> Low Bound OFF FALSE FALSE Permitted High 900 1000 OFF OFF OFF OFF
6 2 RP__2<<1>> Low Bound OFF FALSE FALSE High High 1000 1000 OFF OFF OFF OFF
7 2 RP__2<<2>> Low Bound OFF FALSE FALSE TooLow Permitted 0 900 OFF OFF OFF OFF
8 2 RP__2<<2>> Low Bound OFF FALSE FALSE High Permitted 1000 900 OFF OFF OFF OFF
9 2 RP__2<<2>> Low Bound OFF FALSE FALSE Permitted Permitted 900 900 OFF OFF OFF OFF
10 2 RP__2<<3>> Low Bound OFF TRUE FALSE Permitted TooLow 900 0 OFF OFF OFF ON
11 2 RP__2<<3>> Low Bound OFF TRUE FALSE TooLow TooLow 0 0 OFF OFF OFF ON
12 2 RP__2<<1>> Hi Bound OFF FALSE FALSE Permitted High 999 2000 OFF OFF OFF OFF
13 2 RP__2<<1>> Hi Bound OFF FALSE FALSE High High 2000 2000 OFF OFF OFF OFF
14 2 RP__2<<2>> Hi Bound OFF FALSE FALSE TooLow Permitted 899 999 OFF OFF OFF OFF
15 2 RP__2<<2>> Hi Bound OFF FALSE FALSE High Permitted 2000 999 OFF OFF OFF OFF
16 2 RP__2<<2>> Hi Bound OFF FALSE FALSE Permitted Permitted 999 999 OFF OFF OFF OFF
17 2 RP__2<<3>> Hi Bound OFF TRUE FALSE Permitted TooLow 999 899 OFF OFF OFF ON
18 2 RP__2<<3>> Hi Bound OFF TRUE FALSE TooLow TooLow 899 899 OFF OFF OFF ON

Table 16. Test vector summary for version 2 - Overridden

Vector # FR RP

Convergence

Mode Overridden2 Pressure1 Pressure2 WaterPres1 WaterPres2 Reset1 Reset2 Block1 Block2

1 1 RP__1<<1>> Low Bound TRUE TooLow Permitted 0 900 OFF OFF OFF ON
2 1 RP__1<<1>> Low Bound TRUE TooLow TooLow 0 0 OFF OFF OFF ON
3 1 RP__1<<2>> Low Bound TRUE Permitted TooLow 900 0 OFF OFF OFF ON
4 1 RP__1<<2>> Low Bound TRUE Permitted High 900 1000 OFF OFF OFF ON
5 1 RP__1<<2>> Low Bound TRUE Permitted Permitted 900 900 OFF OFF OFF ON
6 1 RP__1<<1>> Hi Bound TRUE TooLow Permitted 899 999 OFF OFF OFF ON
7 1 RP__1<<1>> Hi Bound TRUE TooLow TooLow 899 899 OFF OFF OFF ON
8 1 RP__1<<2>> Hi Bound TRUE Permitted TooLow 999 899 OFF OFF OFF ON
9 1 RP__1<<2>> Hi Bound TRUE Permitted High 999 2000 OFF OFF OFF ON

10 1 RP__1<<2>> Hi Bound TRUE Permitted Permitted 999 999 OFF OFF OFF ON
11 2 RP__2<<1>> Low Bound FALSE TooLow Permitted 0 900 OFF ON - -
12 2 RP__2<<1>> Low Bound FALSE TooLow TooLow 0 0 OFF ON - -
13 2 RP__2<<2>> Low Bound FALSE Permitted TooLow 900 0 OFF ON - -
14 2 RP__2<<2>> Low Bound FALSE Permitted High 900 1000 OFF ON - -
15 2 RP__2<<2>> Low Bound FALSE Permitted Permitted 900 900 OFF ON - -
16 2 RP__2<<3>> Low Bound FALSE Permitted High 900 1000 OFF OFF - -
17 2 RP__2<<4>> Low Bound FALSE High Permitted 1000 0 OFF OFF - -
18 2 RP__2<<1>> Hi Bound FALSE TooLow Permitted 899 999 OFF ON - -
19 2 RP__2<<1>> Hi Bound FALSE TooLow TooLow 899 899 OFF ON - -
20 2 RP__2<<2>> Hi Bound FALSE Permitted TooLow 999 899 OFF ON - -
21 2 RP__2<<2>> Hi Bound FALSE Permitted High 999 2000 OFF ON - -
22 2 RP__2<<2>> Hi Bound FALSE Permitted Permitted 999 999 OFF ON - -
23 2 RP__2<<3>> Hi Bound FALSE Permitted High 999 2000 OFF OFF - -
24 2 RP__2<<4>> Hi Bound FALSE High Permitted 2000 999 OFF OFF - -

6. Acknowledgements

We thank the researchers at NRL, C. Heitmeyer, S.
Faulk, B. Labaw, and R. Jeffords for their help on this
effort and their comments on drafts of this paper. We
also thank P. Ammann and J. Offutt for their
continuous guidance in this research.

7. Reference

[BB86] Busser, R. D., M. R. Blackburn, Moving structured
methods towards proof of correctness, Proceedings
of Structured Development Forum VIII, August
1986.

 [BB96] Blackburn, M. R., Busser, R. D., T-VEC: A Tool
for Developing Critical System, Eleventh
International Conference on Computer Assurance,
June 1996.

[Bei83] Beizer, B., Software Testing Techniques, Van
Nostrand Reinhold, 1983.

[Bus88] Busser, R. D., Formalizing a theory of real-time
software specification, Software Engineering and
Its Application to Avionics, NATO Advisory
Group for Aerospace Research and Development,
April 1988.

[CGR93] Craigen, D., S. Gerhart, T. Ralston, An
International Survey of Industrial Applications of
Formal Methods, Naval Research Laboratory,
NRL/FR/5546—93-9581, Sept. 1993.

[FBWK92] Faulk, S. R., J. Brackett, P. Ward, and J. Kirby, Jr.,
The Core Method for Real Time Requirements,
IEEE Software, Vol. 9, No. 5, September 1992.

[GW94] Ghiassi, M., K. I. S. Woldman, Dual Programming
Approach to Software Testing, Software Quality
Journal 3, 1994.

[HBGL95] Heitmeyer, C., A. Bull, C. Gasarch and B. Labaw,
SCR*: A Toolset for Specifying and Analyzing
Requirements, Proceedings of the Tenth Annual
Conference on Computer Assurance (COMPASS
‘95), June 1995.

[Hen80] Heninger, K., Specifying Software Requirements
for Complex Systems: New Techniques and Their
Application, IEEE Transactions on Software
Engineering, Vol. SE6, No. 1, Jan, 1980.

[HJL96] Heitmeyer, C., R. Jeffords, B. Labaw, Automated
Consistency Checking of Requirements
Specifications, ACM TOSEM, Vol. 5, No. 3, July,
1996.

[HLK95] Heitmeyer, C., B. Labaw and D. Kiskis,
Consistency Checking of SCR-Style
Requirements Specifications, Proceedings,
International Symposium on Requirements
Engineering, March, 1995.

[Hoa69] C. A. R. Hoare, An Axiomatic Basis for
Computer Programming, Communications of
the ACM, Vol. 12, No. 10, October 1969.

[How76] Howden, W.E. Reliability of the path analysis
testing strategy, IEEE Transactions on
Software Engineering, SE-2(3):208-215, Sept.
1976.

[ORS95] Owre, S., J. Rushby, N. Shankar, Analyzing
Tabular and State-Transition Specifications in
PVS, SRI International, Tech. Report CSL-95-
12, June, 1995.

[PM91] Parnas, D., Madley, J. Functional
Decomposition for Computer Systems
Engineering (Version 2), TR CRL 237,
Telecommunication Research Inst. Of Ontario,
McMaster Univ. 1991.

[ROT89] Richardson, D. J., O. O’Malley, C. Tittle,
Approaches to specification-based testing,
ACM SIGSoft 89: Third Symposium on
Software Testing, Analysis and Verification,
December 1989.

[RTCA92] RTCA/DO178B, Software Considerations in
Airborne Systems and Equipment
Certification, Requirements and Technical
Concepts for Aviation, Washington, D.C.,
December 1992. This document is known as
EUROCAE ED12B in Europe.

[SA96] Sreemani, T., J. M. Atlee, Feasibility of Model
Checking Software Requirements, Eleventh
International Conference on Computer
Assurance, June 1996.

[Sch90] van Schouwen, A. J., The A-7 requirements
model: Re-examination for real-time system
and an application for monitoring sytems. TR
90-276, Queen’s Univ., Kinston, Ont. 1990.

 [SPC93] Software Productivity Consortium.
Consortium Requirements Engineering
Guidebook, SPC–92060–CMC, version
01.00.09. Herndon, Virginia, 1993.

[WC80] White, L. J., E. I. Cohen, A Domain Strategy
for Computer Program Testing, IEEE
Transactions on Software Engineering, Vol.
SE6, No. 3, May 1980.

[Zei89] Zeil, S. J., Perturbation techniques for
detecting domain errors, IEEE Transactions on
Software Engineering, (15)6:737-746, June
1989.

